Manipulating the Spatial Structure of Second-Order Quantum Coherence Using Entangled Photons

被引:0
|
作者
黄双印 [1 ,2 ]
高菁 [1 ,2 ]
任志成 [1 ,2 ]
程子默 [1 ,2 ]
朱文正 [1 ,2 ]
薛舒天 [1 ,2 ]
娄严超 [1 ,2 ]
刘志峰 [1 ,2 ]
陈超 [1 ,2 ]
朱飞 [3 ]
杨立平 [4 ]
汪喜林 [1 ,2 ,5 ,6 ]
王慧田 [1 ,2 ,7 ]
机构
[1] National Laboratory of Solid State Microstructures and School of Physics, Nanjing University
[2] Collaborative Innovation Center of Advanced Microstructures, Nanjing University
[3] Intelligent Scientific Systems CoLimited
[4] Center for Quantum Sciences and School of Physics, Northeast Normal University
[5] Hefei National Laboratory
[6] Synergetic Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China
[7] Collaborative Innovation Center of Extreme Optics, Shanxi
关键词
D O I
暂无
中图分类号
学科分类号
摘要
<正>High-order quantum coherence reveals the statistical correlation of quantum particles. Manipulation of quantum coherence of light in the temporal domain enables the production of the single-photon source, which has become one of the most important quantum resources. High-order quantum coherence in the spatial domain plays a crucial role in a variety of applications, such as quantum imaging, holography, and microscopy. However, the active control of second-order spatial quantum coherence remains a challenging task. Here we predict theoretically and demonstrate experimentally the first active manipulation of second-order spatial quantum coherence,which exhibits the capability of switching between bunching and anti-bunching, by mapping the entanglement of spatially structured photons. We also show that signal processing based on quantum coherence exhibits robust resistance to intensity disturbance. Our findings not only enhance existing applications but also pave the way for broader utilization of higher-order spatial quantum coherence.
引用
收藏
页码:63 / 78
页数:16
相关论文
共 50 条
  • [21] Distance sensitivity of thermal light second-order interference beyond spatial coherence
    Pepe, Francesco V.
    Scala, Giovanni
    Chilleri, Gabriele
    Triggiani, Danilo
    Kim, Yoon-Ho
    Tamma, Vincenzo
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (06):
  • [22] Spatial coherence of light and a fundamental discontinuity of classical second-order wave fronts
    Castaneda, Roman
    Franco, Esteban
    Vargas, David
    PHYSICA SCRIPTA, 2013, 88 (03)
  • [23] Quantum target detection using entangled photons
    Devi, A. R. Usha
    Rajagopal, A. K.
    PHYSICAL REVIEW A, 2009, 79 (06):
  • [24] Measurement of quantum efficiency using entangled photons
    Czitrovszky, A
    Sergienko, A
    Jani, P
    Nagy, A
    LASER PHYSICS, 2000, 10 (01) : 86 - 89
  • [25] Ultrafast double-quantum-coherence spectroscopy of excitons with entangled photons
    Richter, Marten
    Mukamel, Shaul
    PHYSICAL REVIEW A, 2010, 82 (01):
  • [26] Quantum discord versus second-order MQ NMR coherence intensity in dimers
    Kuznetsova, E. I.
    Zenchuk, A. I.
    PHYSICS LETTERS A, 2012, 376 (10-11) : 1029 - 1034
  • [27] Second-order coherence in an excitonpolariton laser: A quantum monte carlo wavefunction approach
    Ezaki, Hiromi
    Yamamoto, Yoshihisa
    NONLINEAR OPTICS QUANTUM OPTICS-CONCEPTS IN MODERN OPTICS, 2006, 35 (04): : 313 - 329
  • [28] Quantum plasmonics: Second-order coherence of surface plasmons launched by quantum emitters into a metallic film
    Mollet, Oriane
    Huant, Serge
    Dantelle, Geraldine
    Gacoin, Thierry
    Drezet, Aurelien
    PHYSICAL REVIEW B, 2012, 86 (04):
  • [29] Second-order Talbot effect with entangled photon pairs
    Luo, Kai-Hong
    Wen, Jianming
    Chen, Xi-Hao
    Liu, Qian
    Xiao, Min
    Wu, Ling-An
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [30] Spatial localisation: Interpolation of first-order and second-order visual structure
    McGraw, P
    Badcock, DR
    McArthur, J
    Bridle, RI
    PERCEPTION, 2004, 33 : 175 - 175