Phase-field modeling of faceted growth in solidification of alloys

被引:0
|
作者
邢辉 [1 ]
安琪 [1 ]
董祥雷 [2 ]
韩永生 [3 ]
机构
[1] The Key Laboratory of Space Applied Physics and Chemistry,Northwestern Polytechnical University
[2] College of Materials Science and Engineering,Zhengzhou University
[3] The EMMS Group,State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TG111.4 [金属的液体结构和凝固理论];
学科分类号
0702 ; 070205 ;
摘要
A regularization of the surface tension anisotropic function used in vapor-liquid-solid nanowire growth was introduced into the quantitative phase-field model to simulate the faceted growth in solidification of alloys.Predicted results show that the value of δ can only affect the region near the tip,and the convergence with respect to δ can be achieved with the decrease of δ near the tip.It can be found that the steady growth velocity is not a mo no tonic function of the cusp amplitude,and the maximum value is approximately at ε=0.8 when the supersaturation is fixed.Moreover,the growth velocity is an increasing function of supersaturation with the morphological transition from facet to dendrite.
引用
收藏
页码:796 / 799
页数:4
相关论文
共 50 条
  • [31] Phase-field model for solidification of Fe-C alloys
    Ode, M.
    Suzuki, T.
    Kim, S. G.
    Kim, W. T.
    [J]. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2000, 1 (01) : 43 - 49
  • [32] Phase-field calculations of pattern formation in solidification of binary alloys
    Miller, W.
    [J]. PHILOSOPHICAL MAGAZINE LETTERS, 2007, 87 (11) : 855 - 862
  • [33] Modeling of dendritic solidification and numerical analysis of the phase-field approach to model complex morphologies in alloys
    Bhagat, Kunal
    Rudraraju, Shiva
    [J]. ENGINEERING WITH COMPUTERS, 2023, 39 (04) : 2345 - 2363
  • [34] Modeling of dendritic solidification and numerical analysis of the phase-field approach to model complex morphologies in alloys
    Kunal Bhagat
    Shiva Rudraraju
    [J]. Engineering with Computers, 2023, 39 : 2345 - 2363
  • [35] Quantitativeness of phase-field simulations for directional solidification of faceted silicon monograins in thin samples
    Braik, Terkia
    Boukellal, Ahmed Kaci
    Debierre, Jean-Marc
    [J]. PHYSICAL REVIEW E, 2022, 106 (04)
  • [36] Phase-field modeling of eutectic growth
    Drolet, F
    Elder, KR
    Grant, M
    Kosterlitz, JM
    [J]. PHYSICAL REVIEW E, 2000, 61 (06): : 6705 - 6720
  • [37] Phase-field simulation of solidification
    Boettinger, WJ
    Warren, JA
    Beckermann, C
    Karma, A
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 : 163 - 194
  • [38] A grand potential approach to phase-field modeling of rapid solidification
    Danilov, Denis A.
    Lebedev, Vladimir G.
    Galenko, Peter K.
    [J]. JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2014, 39 (02) : 93 - 111
  • [39] Quantitative phase-field modeling of solidification at high Lewis number
    Rosam, J.
    Jimack, P. K.
    Mullis, A. M.
    [J]. PHYSICAL REVIEW E, 2009, 79 (03):
  • [40] Mesoscopic modeling of columnar solidification and comparisons with phase-field simulations
    Zaloznik, M.
    Viardin, A.
    Souhar, Y.
    Combeau, H.
    Apel, M.
    [J]. MCWASP XIV: INTERNATIONAL CONFERENCE ON MODELLING OF CASTING, WELDING AND ADVANCED SOLIDIFICATION PROCESSES, 2015, 84