Adaptive candidate estimation-assisted multi-objective particle swarm optimization

被引:0
|
作者
HAN HongGui [1 ,2 ,3 ]
ZHANG LinLin [1 ,2 ,3 ]
HOU Ying [1 ,2 ,3 ]
QIAO JunFei [1 ,2 ]
机构
[1] Faculty of Information Technology,Beijing University of Technology
[2] Beijing Key Laboratory of Computational Intelligence and Intelligent System
[3] Engineering Research Center of Digital Community,Ministry of
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The selection of global best(Gbest) exerts a high influence on the searching performance of multi-objective particle swarm optimization algorithm(MOPSO). The candidates of MOPSO in external archive are always estimated to select Gbest. However,in most estimation methods, the candidates are considered as the Gbest in a fixed way, which is difficult to adapt to varying evolutionary requirements for balance between convergence and diversity of MOPSO. To deal with this problem, an adaptive candidate estimation-assisted MOPSO(ACE-MOPSO) is proposed in this paper. First, the evolutionary state information,including both the global dominance information and global distribution information of non-dominated solutions, is introduced to describe the evolutionary states to extract the evolutionary requirements. Second, an adaptive candidate estimation method,based on two evaluation distances, is developed to select the excellent leader for balancing convergence and diversity during the dynamic evolutionary process. Third, a leader mutation strategy, using the elite local search(ELS), is devised to select Gbest to improve the searching ability of ACE-MOPSO. Fourth, the convergence analysis is given to prove the theoretical validity of ACE-MOPSO. Finally, this proposed algorithm is compared with popular algorithms on twenty-four benchmark functions. The results demonstrate that ACE-MOPSO has advanced performance in both convergence and diversity.
引用
收藏
页码:1685 / 1699
页数:15
相关论文
共 50 条
  • [41] Fitness inheritance in Multi-Objective Particle Swarm Optimization
    Reyes-Sierra, M
    Coello Coello, CA
    2005 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2005, : 116 - 123
  • [42] Multi-objective particle swarm optimization for ontology alignment
    Semenova, A., V
    Kureychik, V. M.
    2016 IEEE 10TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT), 2016, : 141 - 147
  • [43] A simplified multi-objective particle swarm optimization algorithm
    Vibhu Trivedi
    Pushkar Varshney
    Manojkumar Ramteke
    Swarm Intelligence, 2020, 14 : 83 - 116
  • [44] A particle swarm optimization for multi-objective flowshop scheduling
    D. Y. Sha
    Hsing Hung Lin
    The International Journal of Advanced Manufacturing Technology, 2009, 45 (7-8) : 749 - 758
  • [45] Improved multi-objective particle swarm optimization algorithm
    College of Automation, Northwestern Polytechnical University, Xi'an 710129, China
    不详
    Liu, B. (lbn1987113@163.com), 2013, Beijing University of Aeronautics and Astronautics (BUAA) (39):
  • [46] An improved multi-objective particle swarm optimization algorithm
    Zhang, Qiuming
    Xue, Siqing
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 372 - +
  • [47] Molecular docking with multi-objective particle swarm optimization
    Janson, Stefan
    Merkle, Daniel
    Middendorf, Martin
    APPLIED SOFT COMPUTING, 2008, 8 (01) : 666 - 675
  • [48] Intelligent particle swarm optimization in multi-objective problems
    Ho, Shinn-Jang
    Ku, Wen-Yuan
    Jou, Jun-Wun
    Hung, Ming-Hao
    Ho, Shinn-Ying
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2006, 3918 : 790 - 800
  • [49] Constrained Multi-objective Particle Swarm Optimization Algorithm
    Gao, Yue-lin
    Qu, Min
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, 2012, 304 : 47 - 55
  • [50] A particle swarm optimization for multi-objective flowshop scheduling
    Sha, D. Y.
    Lin, Hsing-Hung
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2009, 45 (7-8): : 749 - 758