Molecular dynamics simulations for the growth of CH4-CO2 mixed hydrate

被引:0
|
作者
Lizhi Yi [1 ,2 ,3 ]
Deqing Liang [1 ,2 ]
Xuebing Zhou [1 ,2 ,3 ]
Dongliang Li [1 ,2 ]
机构
[1] Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
[2] Guangzhou Center for Gas Hydrate Research,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
[3] University of Chinese Academy of Sciences
基金
中国国家自然科学基金;
关键词
molecular dynamics simulations; methane-carbon dioxide mixed hydrate; growth; clathrate;
D O I
暂无
中图分类号
O643.1 [化学动力学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics simulations are performed to study the growth mechanism of CH4-CO2 mixed hydrate in xCO2= 75%, xCO2= 50%, and xCO2= 25% systems at T = 250 K, 255 K and 260 K, respectively. Our simulation results show that the growth rate of CH4-CO2 mixed hydrate increases as the CO2 concentration in the initial solution phase increases and the temperature decreases. Via hydrate formation, the composition of CO2 in hydrate phase is higher than that in initial solution phase and the encaging capacity of CO2 in hydrates increases with the decrease in temperature. By analysis of the cage occupancy ratio of CH4 molecules and CO2 molecules in large cages to small cages, we find that CO2 molecules are preferably encaged into the large cages of the hydrate crystal as compared with CH4 molecules. Interestingly, CH4 molecules and CO2 molecules frequently replace with each other in some particular cage sites adjacent to hydrate/solution interface during the crystal growth process. These two species of guest molecules eventually act to stabilize the newly formed hydrates, with CO2 molecules occupying large cages and CH4 molecules occupying small cages in hydrate.
引用
收藏
页码:747 / 754
页数:8
相关论文
共 50 条
  • [41] Microscopic insights on the effects of flue gas components on CH4-CO2 replacement in natural gas hydrate
    Zhang, Yinglong
    Cui, Mao
    Xin, Gongming
    Li, Dexiang
    GAS SCIENCE AND ENGINEERING, 2023, 112
  • [42] CO2 capture from CH4-CO2 mixture by gas-solid contact with tetrahydrofuran clathrate hydrate
    Kida, Masato
    Goda, Hayato
    Sakagami, Hirotoshi
    Minami, Hirotsugu
    CHEMICAL PHYSICS, 2020, 538
  • [43] CH4-CO2 reforming by plasma - challenges and opportunities
    Tao, Xumei
    Bai, Meigui
    Li, Xiang
    Long, Huali
    Shang, Shuyong
    Yin, Yongxiang
    Dai, Xiaoyan
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2011, 37 (02) : 113 - 124
  • [44] Molecular dynamics simulations on dissociation of CO2 hydrate in the presence of inhibitor
    Liu, Ni
    Zhou, Jiali
    Hong, Chunfang
    CHEMICAL PHYSICS, 2020, 538
  • [45] CH4-CO2 reforming by combination of plasma and catalysts
    Wei, Qiang
    Xu, Yan
    Zhang, Xiao-Qing
    Zhao, Chuan-Chuan
    Dai, Xiao-Yan
    Yin, Yong-Xiang
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2013, 41 (03): : 328 - 334
  • [46] Mechanical Properties of CH4-CO2 Heteroclathrate Hydrates
    Xu, Ke
    Yang, Li
    Liu, Jinjie
    Zhang, Zhisen
    Wu, Jianyang
    ENERGY & FUELS, 2020, 34 (11) : 14368 - 14378
  • [47] H2 promotes the premature replacement of CH4-CO2 hydrate even when the CH4 gas-phase pressure exceeds the phase equilibrium pressure of CH4 hydrate
    Xie, Yan
    Zheng, Tao
    Zhu, Yujie
    Sun, Changyu
    Chen, Guangjin
    Feng, Jingchun
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 200
  • [48] Effects of carbon nanotube on the nucleation and growth of CO2 hydrate: Insights from the molecular dynamics simulations
    Liu, Ni
    Huang, Jialei
    Zhu, Hanqi
    Yang, Liang
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 390
  • [49] Unusual promotion/inhibition effect of polyethylenimine on CO2/CH4 hydrate formation: A potential green chemical additive for CH4-CO2 replacement process
    Ho, Yu-Hsuan
    Khoo, Yau Zu
    Chen, Yan-Ping
    Ohmura, Ryo
    Chen, Li-Jen
    CHEMICAL ENGINEERING JOURNAL, 2023, 472
  • [50] Unveiling the effect of H 2 S concentration in CH 4 hydrate formation and growth: A molecular dynamics study
    Jing, Xianwu
    Zhou, Li
    Fu, Ziyi
    Huang, Qian
    Zhang, Zhe
    CHEMICAL ENGINEERING JOURNAL, 2024, 490