Effect of drainage on CO2, CH4, and N2O fluxes from aquaculture ponds during winter in a subtropical estuary of China

被引:7
|
作者
Ping Yang [1 ,2 ]
Derrick Y.F Lai [3 ]
Jia F.Huang [1 ,2 ]
Chuan Tong [1 ,2 ]
机构
[1] School of Geographical Sciences, Fujian Normal University
[2] Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education of China, Fujian Normal University
[3] Department of Geography and Resource Management, and Centre for Environmental Policy and Resource Management,The Chinese University of Hong Kong
基金
美国国家科学基金会;
关键词
Aquaculture pond; Drainage management; Greenhouse gas flux; Global warming; Min River estuary;
D O I
暂无
中图分类号
X714 [水产业];
学科分类号
摘要
Aquaculture ponds are dominant features of the landscape in the coastal zone of China.Generally,aquaculture ponds are drained during the non-culture period in winter.However,the effects of such drainage on the production and flux of greenhouse gases(GHGs)from aquaculture ponds are largely unknown.In the present study,field-based research was performed to compare the GHG fluxes between one drained pond(DP,with a water depth of 0.05 m)and one undrained pond(UDP,with a water depth of 1.16 m)during one winter in the Min River estuary of southeast China.Over the entire study period,the mean COflux in the DP was(0.75±0.12)mmol/(m~2·hr),which was significantly higher than that in the UDP of(-0.49±0.09)mmol/(m~2·hr)(p<0.01).This indicates that drainage drastically transforms aquaculture ponds from a net sink to a net source of COin winter.Mean CHand NO emissions were significantly higher in the DP compared to those in the UDP(CH=(0.66±0.31)vs.(0.07±0.06)mmol/(m~2·hr)and NO=(19.54±2.08)vs.(0.01±0.04)μmol/(m~2·hr))(p<0.01),suggesting that drainage would also significantly enhance CHand NO emissions.Changes in environmental variables(including sediment temperature,p H,salinity,redox status,and water depth)contributed significantly to the enhanced GHG emissions following pond drainage.Furthermore,analysis of the sustained-flux global warming and cooling potentials indicated that the combined global warming potentials of the GHG fluxes were significantly higher in the DP than in the UDP(p<0.01),with values of739.18 and 26.46 mg CO-eq/(m~2·hr),respectively.Our findings suggested that drainage of aquaculture ponds can increase the emissions of potent GHGs from the coastal zone of China to the atmosphere during winter,further aggravating the problem of global warming.
引用
收藏
页码:72 / 82
页数:11
相关论文
共 50 条
  • [41] SOIL-ATMOSPHERE CO2, CH4 AND N2O FLUXES FROM A PEATLAND IN THE CONTINUOUS PERMAFROST ZONE, NORTHEAST CHINA
    Song, Changchun
    Miao, Yuqing
    Wang, Xianwei
    Meng, Henan
    FRESENIUS ENVIRONMENTAL BULLETIN, 2018, 27 (5A): : 3606 - 3616
  • [42] Seasonal Variation of Emission Fluxes of CO2, CH4, and N2O from Different Larch Forests in the Daxing'An Mountains of China
    Li, Jinbo
    Wu, Yining
    Wang, Jianbo
    Liang, Jiawen
    Dong, Haipeng
    Chen, Qing
    Zhong, Haixiu
    FORESTS, 2023, 14 (07):
  • [43] Simultaneous Abiotic Production of Greenhouse Gases (CO2, CH4, and N2O) in Subtropical Soils
    Liu, Jiangong
    Hartmann, Simon Christoph
    Keppler, Frank
    Lai, Derrick Y. F.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2019, 124 (07) : 1977 - 1987
  • [44] Fluxes of CH4, CO2, NO, and N2O in an improved fallow agroforestry system in eastern Amazonia
    Verchot, Louis V.
    Brienza, Silvio, Jr.
    de Oliveira, Valdirene Costa
    Mutegi, James K.
    Cattanio, J. Henrique
    Davidson, Eric A.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2008, 126 (1-2) : 113 - 121
  • [45] Decadal variability of soil CO2, NO, N2O, and CH4 fluxes at the Hoglwald Forest, Germany
    Luo, G. J.
    Brueggemann, N.
    Wolf, B.
    Gasche, R.
    Grote, R.
    Butterbach-Bahl, K.
    BIOGEOSCIENCES, 2012, 9 (05) : 1741 - 1763
  • [46] The impact of ploughing intensively managed temperate grasslands on N2O, CH4 and CO2 fluxes
    J. Drewer
    M. Anderson
    P.E. Levy
    B. Scholtes
    C. Helfter
    J. Parker
    R.M. Rees
    U.M. Skiba
    Plant and Soil, 2017, 411 : 193 - 208
  • [47] Liming practice in temperate forest ecosystems and the effects on CO2, N2O and CH4 fluxes
    Borken, W
    Brumme, R
    SOIL USE AND MANAGEMENT, 1997, 13 (04) : 251 - 257
  • [48] Effects of grazing on CO2, CH4, and N2O fluxes in three temperate steppe ecosystems
    Shi, Huiqiu
    Hou, Longyu
    Yang, Liuyi
    Wu, Dongxiu
    Zhang, Lihua
    Li, Linghao
    ECOSPHERE, 2017, 8 (04):
  • [49] Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil
    Hawthorne, Iain
    Johnson, Mark S.
    Jassal, Rachhpal S.
    Black, T. Andrew
    Grant, Nicholas J.
    Smukler, Sean M.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2017, 192 : 203 - 214
  • [50] The impact of ploughing intensively managed temperate grasslands on N2O, CH4 and CO2 fluxes
    Drewer, J.
    Anderson, M.
    Levy, P. E.
    Scholtes, B.
    Helfter, C.
    Parker, J.
    Rees, R. M.
    Skiba, U. M.
    PLANT AND SOIL, 2017, 411 (1-2) : 193 - 208