Intrinsic component filtering for fault diagnosis of rotating machinery

被引:0
|
作者
Zongzhen ZHANG
Shunming LI
Jiantao LU
Yu XIN
Huijie MA
机构
[1] 不详
[2] College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics
[3] 不详
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Fault diagnosis of rotating machinery has always drawn wide attention. In this paper,Intrinsic Component Filtering(ICF), which achieves population sparsity and lifetime consistency using two constraints: l1=2 norm of column features and l3=2-norm of row features, is proposed for the machinery fault diagnosis. ICF can be used as a feature learning algorithm, and the learned features can be fed into the classification to achieve the automatic fault classification. ICF can also be used as a filter training method to extract and separate weak fault components from the noise signals without any prior experience. Simulated and experimental signals of bearing fault are used to validate the performance of ICF. The results confirm that ICF performs superior in three fault diagnosis fields including intelligent fault diagnosis, weak signature detection and compound fault separation.
引用
下载
收藏
页码:397 / 409
页数:13
相关论文
共 50 条
  • [21] Neurofuzzy methodologies for rotating machinery fault diagnosis
    Yan, T
    Rong, CJ
    ISTM/2005: 6th International Symposium on Test and Measurement, Vols 1-9, Conference Proceedings, 2005, : 1061 - 1063
  • [22] ROTATING MACHINERY - MONITORING AND FAULT-DIAGNOSIS
    SMILEY, RG
    SOUND AND VIBRATION, 1983, 17 (09): : 26 - 28
  • [23] Fault diagnosis of rotating machinery by neural networks
    Ligteringen, R
    Ypma, A
    Duin, RPW
    Frietman, EEE
    NEURAL NETWORKS: BEST PRACTICE IN EUROPE, 1997, 8 : 161 - 164
  • [24] A review of fault diagnosis methods for rotating machinery
    Shi, Zhenjin
    Li, Yueyang
    Liu, Shuai
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 1618 - 1623
  • [25] AR model for diagnosis of rotating machinery fault
    Huang, Shi-Hong
    Chen, Yong
    Gao, Wei
    Qilunji Jishu/Turbine Technology, 2001, 43 (06):
  • [26] A new fault diagnosis method of rotating machinery
    Chen, Chih-Hao
    Shyu, Rong-Juin
    Ma, Chih-Kao
    SHOCK AND VIBRATION, 2008, 15 (06) : 585 - 598
  • [27] A Novel Method for Fault Diagnosis of Rotating Machinery
    Tang, Meng
    Liao, Yaxuan
    Luo, Fan
    Li, Xiangshun
    ENTROPY, 2022, 24 (05)
  • [28] A method for intelligent fault diagnosis of rotating machinery
    Chen, CZ
    Mo, CT
    DIGITAL SIGNAL PROCESSING, 2004, 14 (03) : 203 - 217
  • [29] Bispectrum analysis for rotating machinery fault diagnosis
    Yang, JT
    Ding, Q
    INTEGRATING DYNAMICS, CONDITION MONITORING AND CONTROL FOR THE 21ST CENTURY - DYMAC 99, 1999, : 383 - 388
  • [30] Parallel Cross-Sparse Filtering Networks and Its Application on Fault Diagnosis of Rotating Machinery
    Wang, Shan
    Han, Baokun
    Bao, Huaiqian
    Wang, Jinrui
    Zhang, Zongzhen
    JOURNAL OF SENSORS, 2022, 2022