THE AUTOMORPHISM GROUP OF GENERALIZED REED-MULLER CODES

被引:29
|
作者
BERGER, T
CHARPIN, P
机构
[1] INRIA,DOMAINE VOLUCEAU,ROCQUENCOURT,BP 105,F-78153 LE CHESNAY,FRANCE
[2] UFR SCI LIMOGES,F-87060 LIMOGES,FRANCE
关键词
D O I
10.1016/0012-365X(93)90321-J
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the automorphism group of Generalized Reed-Muller codes is the general linear nonhomogeneous group. The Generalized Reed-Muller codes are introduced by Kasami, Lin and Peterson. An extensive study was made by Delsarte, Goethals and Mac-Williams; our result follows their description of the minimum weight codewords. An automorphism of a cyclic q-ary code is here a substitution over the field GF(q(m)). In the more general case where the automorphisms are defined by monomial matrices, we also obtain the automorphism group (called the monomial group) as the direct product of the general linear nonhomogeneous group with the multiplicative group of the alphabet field.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [31] Quaternary Reed-Muller codes
    Borges, J
    Fernández, C
    Phelps, KT
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (07) : 2686 - 2691
  • [32] ON A CONJECTURE ON REED-MULLER CODES
    WASAN, SK
    GAMES, RA
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1984, 56 (02) : 269 - 271
  • [33] Reed-Muller Codes Polarize
    Abbe, Emmanuel
    Ye, Min
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (12) : 7311 - 7332
  • [34] A NOTE ON REED-MULLER CODES
    DASS, BK
    MUTTOO, SK
    DISCRETE APPLIED MATHEMATICS, 1980, 2 (04) : 345 - 348
  • [35] Reed-Muller codes polarize
    Abbe, Emmanuel
    Ye, Min
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 273 - 286
  • [36] PROJECTIVE REED-MULLER CODES
    SORENSEN, AB
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) : 1567 - 1576
  • [37] Symmetric Reed-Muller Codes
    Yan, Wei
    Lin, Sian-Jheng
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (07) : 3937 - 3947
  • [38] Quantum Reed-Muller codes
    Steane, AM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (05) : 1701 - 1703
  • [39] Skew Reed-Muller codes
    Geiselmann, Willi
    Ulmer, Felix
    RINGS, MODULES AND CODES, 2019, 727 : 107 - 116
  • [40] On the codewords of generalized Reed-Muller codes reaching the fourth weight
    Golalizadeh, Somayyeh
    Soltankhah, Nasrin
    INFORMATION AND COMPUTATION, 2024, 296