THE AUTOMORPHISM GROUP OF GENERALIZED REED-MULLER CODES

被引:29
|
作者
BERGER, T
CHARPIN, P
机构
[1] INRIA,DOMAINE VOLUCEAU,ROCQUENCOURT,BP 105,F-78153 LE CHESNAY,FRANCE
[2] UFR SCI LIMOGES,F-87060 LIMOGES,FRANCE
关键词
D O I
10.1016/0012-365X(93)90321-J
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the automorphism group of Generalized Reed-Muller codes is the general linear nonhomogeneous group. The Generalized Reed-Muller codes are introduced by Kasami, Lin and Peterson. An extensive study was made by Delsarte, Goethals and Mac-Williams; our result follows their description of the minimum weight codewords. An automorphism of a cyclic q-ary code is here a substitution over the field GF(q(m)). In the more general case where the automorphisms are defined by monomial matrices, we also obtain the automorphism group (called the monomial group) as the direct product of the general linear nonhomogeneous group with the multiplicative group of the alphabet field.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] THE AUTOMORPHISM-GROUPS OF GENERALIZED REED-MULLER CODES
    KNORR, R
    WILLEMS, W
    ASTERISQUE, 1990, (181-82) : 195 - 207
  • [2] THE AUTOMORPHISM GROUP OF THE Q-ARY REED-MULLER CODES
    BERGER, T
    CHARPIN, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (12): : 883 - 886
  • [3] GENERALIZED REED-MULLER CODES
    KASAMI, T
    LIN, S
    PETERSON, WW
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1968, 51 (03): : 96 - &
  • [4] GENERALIZED REED-MULLER CODES
    WEISS, E
    INFORMATION AND CONTROL, 1962, 5 (03): : 213 - &
  • [5] Automorphism Ensemble Decoding of Reed-Muller Codes
    Geiselhart, Marvin
    Elkelesh, Ahmed
    Ebada, Moustafa
    Cammerer, Sebastian
    ten Brink, Stephan
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (10) : 6424 - 6438
  • [6] Holes in Generalized Reed-Muller Codes
    Lovett, Shachar
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (06) : 2583 - 2586
  • [7] ON GENERALIZED REED-MULLER CODES AND THEIR RELATIVES
    DELSARTE, P
    GOETHALS, JM
    MACWILLI.FJ
    INFORMATION AND CONTROL, 1970, 16 (05): : 403 - &
  • [8] Automorphism groups of homogeneous and projective Reed-Muller codes
    Berger, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (11): : 935 - 938
  • [9] Automorphism groups of homogeneous and projective Reed-Muller codes
    Berger, TP
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (05) : 1035 - 1045
  • [10] Complete Complementary Codes and Generalized Reed-Muller Codes
    Chen, Chao-Yu
    Wang, Chung-Hsuan
    Chao, Chi-Chao
    IEEE COMMUNICATIONS LETTERS, 2008, 12 (11) : 849 - 851