Multiobjective Optimization in a Quantum Adiabatic Computer

被引:6
|
作者
Baran, Benjamin [1 ]
Villagra, Marcos [1 ]
机构
[1] Univ Nacl Asunci, NIDTEC, Campus Univ, San Lorenzo 2619, Paraguay
关键词
multiobjective optimization; quantum adiabatic computing; combinatorial optimization;
D O I
10.1016/j.entcs.2016.12.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work we propose what we consider the first quantum algorithm for multiobjective combinatorial optimization, at least to the best of our knowledge. The proposed algorithm is based on the adiabatic algorithm of Farhi et al. and it is constructed by mapping a multiobjective combinatorial optimization problem into a Hamiltonian using a convex combination among objectives. We present mathematical properties of the eigenspectrum of the associated Hamiltonian and prove that the quantum adiabatic algorithm can find Pareto-optimal solutions provided certain convex combinations of objectives are used and the underlying multiobjective problem meets certain restrictions.
引用
收藏
页码:27 / 38
页数:12
相关论文
共 50 条
  • [1] A Quantum Adiabatic Algorithm for Multiobjective Combinatorial Optimization
    Baran, Benjamin
    Villagra, Marcos
    AXIOMS, 2019, 8 (01)
  • [2] Multi-tower heliostat field optimization by means of adiabatic quantum computer
    Pisani, Lorenzo
    Moreau, Giuliana Siddi
    Leonardi, Erminia
    Podda, Carlo
    Mameli, Andrea
    Cao, Giacomo
    SOLAR ENERGY, 2023, 263
  • [3] Adiabatic quantum optimization with qudits
    Mohammad H. S. Amin
    Neil G. Dickson
    Peter Smith
    Quantum Information Processing, 2013, 12 : 1819 - 1829
  • [4] Adiabatic quantum optimization with qudits
    Amin, Mohammad H. S.
    Dickson, Neil G.
    Smith, Peter
    QUANTUM INFORMATION PROCESSING, 2013, 12 (04) : 1819 - 1829
  • [5] Decoherence in a scalable adiabatic quantum computer
    Ashhab, S.
    Johansson, J. R.
    Nori, Franco
    PHYSICAL REVIEW A, 2006, 74 (05):
  • [6] Adiabatic Circuits for Quantum Computer Control
    DeBenedictis, Erik P.
    2020 INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC 2020), 2020, : 42 - 49
  • [7] Multiobjective differential evolution (MODE) for optimization of adiabatic styrene reactor
    Babu, BV
    Chakole, PG
    Mubeen, JHS
    CHEMICAL ENGINEERING SCIENCE, 2005, 60 (17) : 4822 - 4837
  • [8] A multiobjective evolutionary algorithm toolbox for computer-aided multiobjective optimization
    Tan, KC
    Lee, TH
    Khoo, D
    Khor, EF
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (04): : 537 - 556
  • [9] Adiabatic quantum optimization with the wrong Hamiltonian
    Young, Kevin C.
    Blume-Kohout, Robin
    Lidar, Daniel A.
    PHYSICAL REVIEW A, 2013, 88 (06):
  • [10] DECOMPOSITION AND GLUING FOR ADIABATIC QUANTUM OPTIMIZATION
    McCurdy, Micah Blake
    Egger, Jeffrey
    Kyriakidis, Jordan
    QUANTUM INFORMATION & COMPUTATION, 2014, 14 (11-12) : 949 - 965