BEST APPROXIMATION IN FINITE-DIMENSIONAL SUBSPACES OF L(W, V)

被引:8
|
作者
LEWICKI, G
机构
[1] Jagiellonian University, Department of Mathematics, 30-059 Krakow
关键词
D O I
10.1006/jath.1995.1041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Kolmogorov's type characterization of best approximation for given L epsilon L(W, V) in finite dimensional subspace V subset of L(W, V). This extends the results obtained by Malbrock for the case W = V =c(0) and W = C(T), V = C(S). (C) 1995 Academic Press, Inc.
引用
收藏
页码:151 / 165
页数:15
相关论文
共 50 条
  • [41] On Quantum States with a Finite-Dimensional Approximation Property
    Shirokov, M. E.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (10) : 2437 - 2454
  • [42] CHARACTERIZATION OF BEST APPROXIMATIONS IN NORMED LINEAR-SPACES OF MATRICES BY ELEMENTS OF FINITE-DIMENSIONAL LINEAR-SUBSPACES
    LAU, KK
    RIHA, WOJ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 35 (FEB) : 109 - 120
  • [43] FINITE-DIMENSIONAL REPRESENTATIONS OF W-ALGEBRAS
    Losev, Ivan
    DUKE MATHEMATICAL JOURNAL, 2011, 159 (01) : 99 - 143
  • [44] Sampling Theorems for Signals From the Union of Finite-Dimensional Linear Subspaces
    Blumensath, Thomas
    Davies, Mike E.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (04) : 1872 - 1882
  • [45] FINITE-DIMENSIONAL INVARIANT SUBSPACES FOR MEASURABLE SEMIGROUPS OF LINEAR-OPERATORS
    LAU, ATM
    WONG, JCS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 127 (02) : 548 - 558
  • [46] Finite-dimensional orthocomplemented subspaces in p-adic normed spaces
    Perez-Garcia, C
    Schikhof, WH
    ULTRAMETRIC FUNCTIONAL ANALYSIS, 2003, 319 : 281 - 298
  • [47] Direct sum graph of the subspaces of a finite-dimensional vector space over finite fields
    Wani, Bilal A.
    Altaf, Aaqib
    Pirzada, S.
    Chishti, T. A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [48] Finite-Dimensional Gaussian Approximation with Linear Inequality Constraints
    Lopez-Lopera, Andres F.
    Bachoc, Francois
    Durrande, Nicolas
    Roustant, Olivier
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (03): : 1224 - 1255
  • [49] V-REPRESENTABILITY IN FINITE-DIMENSIONAL SPACES
    ENGLISCH, H
    ENGLISCH, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (18): : L693 - L695
  • [50] Finite-dimensional approximation for a class of elliptic obstacle problems
    Huang, YS
    Zhou, YY
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (07) : 1745 - 1754