LOW-TEMPERATURE FATIGUE OF 316L AND 316LN AUSTENITIC STAINLESS-STEELS

被引:92
|
作者
VOGT, JB
FOCT, J
REGNARD, C
ROBERT, G
DHERS, J
机构
[1] ASCOMETAL,F-42702 FIRMINY,FRANCE
[2] CEN,ETUDES COMPORTEMENT MAT LAB,F-38041 GRENOBLE,FRANCE
关键词
D O I
10.1007/BF02665004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article is concerned with the cyclic properties of 316L-type austenitic stainless at 300 and 77 K. The role of nitrogen alloying and of the temperature decrease is examined during low-cycle fatigue (LCF) and fatigue crack propagation. Fatigue resistance is enhanced by the addition of nitrogen in steel at both test temperatures. The results are discussed on the basis of microstructural observations. Planar slip of dislocations is found in the nitrogen-containing steel and is favored by a decrease in test temperature. To some extent, the influence of interstitial nitrogen on the fatigue properties is related to its role in stabilizing austenite observed during cooling as well as during straining.
引用
收藏
页码:2385 / 2392
页数:8
相关论文
共 50 条
  • [31] Static Recrystallization Behavior of 316LN Austenitic Stainless Steel
    JIN Miao
    LU Bo
    LIU Xin-gang
    GUO Huan
    JI Hai-peng
    GUO Bao-feng
    [J]. Journal of Iron and Steel Research(International), 2013, 20 (11) : 67 - 72
  • [32] Atomistic study on high temperature creep of nanocrystalline 316L austenitic stainless steels
    Wang, Bing
    Wang, Qian
    Luo, Rong
    Kan, Qianhua
    Gu, Bin
    [J]. ACTA MECHANICA SINICA, 2023, 39 (05)
  • [33] Static Recrystallization Behavior of 316LN Austenitic Stainless Steel
    Miao Jin
    Bo Lu
    Xin-gang Liu
    Huan Guo
    Hai-peng Ji
    Bao-feng Guo
    [J]. Journal of Iron and Steel Research International, 2013, 20 : 67 - 72
  • [34] Modelling of cyclic plasticity for austenitic stainless steels 304L, 316L, 316L(N)-IG
    Dalla Palma, Mauro
    [J]. FUSION ENGINEERING AND DESIGN, 2016, 109 : 20 - 25
  • [35] Electrolyte and temperature effects on pitting corrosion of type 316LN stainless steels
    Ningshen, S
    Mudali, UK
    Dayal, RK
    [J]. BRITISH CORROSION JOURNAL, 2001, 36 (01): : 36 - 41
  • [36] Thermomechanical and isothermal fatigue behavior of 347 and 316L austenitic stainless tube and pipe steels
    Ramesh, Mageshwaran
    Leber, Hans J.
    Janssens, Koenraad G. F.
    Diener, Markus
    Spolenak, Ralph
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2011, 33 (05) : 683 - 691
  • [37] Plasma Carburizing of AISI 316L Austenitic Stainless Steel at Low Temperature
    Zheng, Shaomei
    Zhao, Cheng
    [J]. ADVANCES IN KEY ENGINEERING MATERIALS, 2011, 214 : 564 - 568
  • [38] Nanostructurization of 316L type austenitic stainless steels by hydrostatic extrusion
    Pachla, W.
    Skiba, J.
    Kulczyk, M.
    Przybysz, S.
    Przybysz, M.
    Wroblewska, M.
    Diduszko, R.
    Stepniak, R.
    Bajorek, J.
    Radomski, M.
    Fafara, W.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 615 : 116 - 127
  • [39] GRAIN-BOUNDARY SENSITIZATION AND DESENSITIZATION DURING THE AGING OF 316L(N) AUSTENITIC STAINLESS-STEELS
    TEKIN, A
    MARTIN, JW
    SENIOR, BA
    [J]. JOURNAL OF MATERIALS SCIENCE, 1991, 26 (09) : 2458 - 2466
  • [40] Low temperature grain boundary diffusion of chromium in SUS316 and 316L stainless steels
    Mizouchi, M
    Yamazaki, Y
    Iijima, Y
    Arioka, K
    [J]. MATERIALS TRANSACTIONS, 2004, 45 (10) : 2945 - 2950