Jordan algebras;
Lie algebras;
associative algebras;
Yang-Baxter equations;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The current paper emerged after the 12th International Workshop on Differential Geometry and Its Applications, hosted by the Petroleum Gas University from Ploiesti, between September 23rd and September 26th, 2015. Jordan algebras and Lie algebras are the main non-associative structures. In the last years, several attempts to unify non-associative algebras and associative algebras led to UJLA structures. Another algebraic structure which we will use in order to unify non-associative algebras and associative algebras is the Yang-Baxter equation.
机构:
Univ Nova Lisboa, Fac Sci & Technol, Ctr Math & Applicat, P-2829516 Monte De Caparica, Caparica, Portugal
Polytech Inst Tomar, Managing Sch, P-2300313 Quinta Do Contador, Tomar, PortugalUniv Nova Lisboa, Fac Sci & Technol, Ctr Math & Applicat, P-2829516 Monte De Caparica, Caparica, Portugal
Covas, Ricardo
Mexia, Joao Tiago
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, Fac Sci & Technol, Ctr Math & Applicat, P-2829516 Monte De Caparica, Caparica, PortugalUniv Nova Lisboa, Fac Sci & Technol, Ctr Math & Applicat, P-2829516 Monte De Caparica, Caparica, Portugal
Mexia, Joao Tiago
Zmyslony, Roman
论文数: 0引用数: 0
h-index: 0
机构:
Univ Opole, Inst Math & Comp Sci, PL-45052 Opole, Poland
Univ Zielona Gora, Fac Math Comp Sci & Econometr, PL-65246 Zielona Gora, PolandUniv Nova Lisboa, Fac Sci & Technol, Ctr Math & Applicat, P-2829516 Monte De Caparica, Caparica, Portugal