ON THE SYMMETRICAL AND WEIGHTED SHAPLEY VALUES

被引:42
|
作者
CHUN, Y [1 ]
机构
[1] UNIV ROCHESTER,DEPT ECON,ROCHESTER,NY 14627
关键词
D O I
10.1007/BF01240278
中图分类号
F [经济];
学科分类号
02 ;
摘要
We present new axiomatic characterizations of the symmetric Shapley value and of weighted Shapley values for transferable utility coalitional form games without imposing the axiom of additivity (Shapley [1953a,b]). Our main condition is coalitional strategic equivalence, introduced by Chun [1989]. We show that coalitional strategic equivalence, together with efficiency, and symmetry, characterizes the symmetric Shapley value, and this axiom, together with efficiency, positivity, homogeneity, and partnership, characterizes weighted Shapley values. © 1991 Physica-Verlag.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 50 条
  • [11] Weakly balanced contributions and the weighted Shapley values
    Casajus, Andre
    JOURNAL OF MATHEMATICAL ECONOMICS, 2021, 94
  • [12] Symmetry, mutual dependence, and the weighted Shapley values
    Casajus, Andre
    JOURNAL OF ECONOMIC THEORY, 2018, 178 : 105 - 123
  • [13] Generalization of weighted-egalitarian Shapley values
    Cheon, Hyungkyu
    Choi, Dong Gu
    OPERATIONS RESEARCH LETTERS, 2024, 54
  • [14] Weighted shapley values for games in generalized characteristic function form
    Gustavo Bergantiños
    Estela Sánchez
    Top, 2001, 9 (1) : 55 - 67
  • [15] USING WEIGHTED SHAPLEY VALUES TO MEASURE THE SYSTEMIC RISK OF INTERCONNECTED BANKS
    Lin, Junshan
    PACIFIC ECONOMIC REVIEW, 2018, 23 (02) : 244 - 270
  • [16] Correction to: Parallel axiomatizations of weighted and multiweighted Shapley values, random order values, and the Harsanyi set
    Manfred Besner
    Social Choice and Welfare, 2020, 55 : 213 - 214
  • [17] Shapley Chains: Extending Shapley Values to Classifier Chains
    Ayad, Celia Wafa
    Bonnier, Thomas
    Bosch, Benjamin
    Read, Jesse
    DISCOVERY SCIENCE (DS 2022), 2022, 13601 : 541 - 555
  • [18] A Monotonic Weighted Shapley Value
    Manuel, Conrado M.
    Martin, Daniel
    GROUP DECISION AND NEGOTIATION, 2020, 29 (04) : 627 - 654
  • [19] A Monotonic Weighted Shapley Value
    Conrado M. Manuel
    Daniel Martín
    Group Decision and Negotiation, 2020, 29 : 627 - 654
  • [20] P-Shapley: Shapley Values on Probabilistic Classifiers
    Xia, Haocheng
    Li, Xiang
    Pang, Junyuan
    Liu, Jinfei
    Ren, Kui
    Xiong, Li
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2024, 17 (07): : 1737 - 1750