Nano-Clay and Iron Impregnated Clay Nanocomposite for Cu2+ and Pb2+ Ions Removal from Aqueous Solutions

被引:0
|
作者
Tarekegn, Mekonnen Maschal [1 ]
Balakrishnan, Raj Mohan [2 ]
Hiruy, Andualem Mekonnen [1 ]
Dekebo, Ahmed Hussen [1 ]
Maanyam, Hema Susmitha [2 ]
机构
[1] Addis Ababa Univ, Addis Ababa, Ethiopia
[2] Natl Inst Technol Karnataka, Surathkal, Mangalore, India
来源
关键词
Adsorption; heavy metals; nano-clay; contaminant; pollution;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Several physicochemical techniques have been widely studied for heavy metals removal despite most of them are associated with challenges of higher cost, accessibility, and complex technical feasibility. In this study, nano-sorbent materials were developed from a naturally available clay matrices and its heavy metals (Cu2+ and Pb2+) removal capacity was tested at its pristine and iron impregnated form. Both top to down and borohydride reduction methods were used to produce the nano-sorbents. The nano-sorbents were characterized by XRD, XRF, SEM, FTIR, BET, and TGA/DGA. The sorption was studied in batch experiments. The surface area, pore-volume, and pore diameter of nano-clay were found 43.49 m(2)/g, 0.104 cm(3)/g, and 2.81 nm, respectively while iron impregnated nano-clay has shown a surface area (73.11 m(2)/g), pore-volume (0.153 m(3)/g), and pore diameter (3.83 nm). Both nanoparticles have shown a mesoporous nature. The highest Cu2+ and Pb2+ removal capacity of nano-clay was 99.2% (similar to 11.9 mg/g) and 99.6% (similar to 11.95 mg/g), respectively. Whereas, the iron impregnated nano-clay has achieved the highest Cu2+ and Pb2+ removal efficiency 99.8% (similar to 11.97 mg/g) and 99.7% (11.96 mg/g), respectively. The highest Cu2+ adsorption efficiency of iron impregnated nanoclay was achieved at pH 5.0, adsorbent dose 0.83 g/L, contact time 150 minutes, and Cu2+ initial concentration 4 ppm while its highest Pb2+ adsorption activity was achieved at pH 5.0, contact time (90 minutes), Pb2+ initial concentration (6 ppm), and the adsorbent dose (0.67 g/L). Whereas, the Cu2+ adsorption using nano-clay was highest at pH 5.0, contact time (180 minutes), adsorbent dose (1.0 g/L), and Cu2+ initial concentration (2 ppm). While, pH 5.0, contact time (90 minutes), adsorbent dose (0.83 g/L), and Pb2+ initial concentration (4 ppm) was found to the conditions of highest Pb2+ removal. In all cases, the pseudo-second-order kinetics indicated the presence of chemisorption. Langmuir adsorption characteristics has been reflected on Pb2+ and Cu2+ removal activities of the nanoclay and iron impregnated nanoclay, respectively. Whereas, Freundlich isotherm model was better fitted for Cu2+ adsorption activity of the nanoclay. The -Delta G (<-20 KJ/mol), +Delta H degrees, and +Delta S degrees have shown a spontaneous and endothermic adsorption activity with a high level of adsorbents disorder. In general, the result of iron impregnated nano-clay has shown a promising result for the removal of Cu2+ and Pb2+ aqueous solution.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Nano zero valent iron (nZVI) particles for the removal of heavy metals (Cd2+, Cu2+ and Pb2+) from aqueous solutions (vol 11, pg 18539, 2021)
    Tarekegn, Mekonnen Maschal
    Hiruy, Andualem Mekonnen
    Dekebo, Ahmed Hussen
    RSC ADVANCES, 2021, 11 (43) : 27084 - 27084
  • [32] Luminescence recognition material as an INHIBIT logic gate in presence of Pb2+ and Cu2+ ions in aqueous solutions
    Orlowska, Maja
    Klonkowski, Andrzej M.
    Jezierska, Julia
    Ryl, Jacek
    SENSORS AND ACTUATORS B-CHEMICAL, 2013, 186 : 396 - 406
  • [33] Competitive biosorption of Pb2+ Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin
    Sengil, I. Ayhan
    Ozacar, Mahmut
    JOURNAL OF HAZARDOUS MATERIALS, 2009, 166 (2-3) : 1488 - 1494
  • [34] Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions
    Ahmad, Mahtab
    Usman, Adel R. A.
    Lee, Sang Soo
    Kim, Sung-Chul
    Joo, Jin-Ho
    Yang, Jae E.
    Ok, Yong Sik
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2012, 18 (01) : 198 - 204
  • [35] Modification of pineapple peel fibre with succinic anhydride for Cu2+, Cd2+ and Pb2+ removal from aqueous solutions
    Hu, Xiuyi
    Zhao, Mouming
    Song, Guosheng
    Huang, Huihua
    ENVIRONMENTAL TECHNOLOGY, 2011, 32 (07) : 739 - 746
  • [36] Removal of Heavy Metals (Fe3+, Cu2+, Zn2+, Pb2+, Cr3+ and Cd2+) from Aqueous Solutions by Using Hebba Clay and Activated Carbon
    Shama, S. A.
    Gad, M. A.
    PORTUGALIAE ELECTROCHIMICA ACTA, 2010, 28 (04) : 231 - 239
  • [37] Novel Cross-Linked Polyphosphonate for the Removal of Pb2+ and Cu2+ from Aqueous Solution
    Al Hamouz, Othman Charles S.
    Ali, Shaikh A.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (43) : 14178 - 14187
  • [38] Application of Modified Nickel Slag Adsorbent on the Removal of Pb2+ and Cu2+ from Aqueous Solution
    Lin Liang
    Yu Yan
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2016, 35 (06) : 879 - 888
  • [39] Application of Modified Nickel Slag Adsorbent on the Removal of Pb2+ and Cu2+ from Aqueous Solution
    林亮
    于岩
    结构化学, 2016, 35 (06) : 879 - 888
  • [40] REMOVAL OF Pb2+ TOXIC IONS FROM AQUEOUS SOLUTIONS ON POROUS HYDROXYAPATITE GRANULES
    Melinescu, Alina
    Tardei, Christu
    Simionescu, Claudia Maria
    Marinescu, Virgil
    Miclea, Angelica
    REVISTA ROMANA DE MATERIALE-ROMANIAN JOURNAL OF MATERIALS, 2013, 43 (02): : 223 - 226