NIL-CLEAN RINGS OF NILPOTENCY INDEX AT MOST TWO WITH APPLICATION TO INVOLUTION-CLEAN RINGS

被引:1
|
作者
Li, Yu [1 ]
Quan, Xiaoshan [2 ]
Xia, Guoli [3 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Guangxi Teachers Educ Univ, Sch Math & Stat, Nanning 530001, Guangxi, Peoples R China
[3] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
来源
基金
中国国家自然科学基金;
关键词
idempotent; nilpotent; involution; nil-clean ring of nilpotency index at most 2; involution-clean ring;
D O I
10.4134/CKMS.c170308
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring is nil-clean if every element is a sum of a nilpotent and an idempotent, and a ring is involution-clean if every element is a sum of an involution and an idempotent. In this paper, a description of nil-clean rings of nilpotency index at most 2 is obtained, and is applied to improve a known result on involution-clean rings.
引用
收藏
页码:751 / 757
页数:7
相关论文
共 50 条
  • [31] NIL CLEAN INDEX OF RINGS
    Basnet, Dhiren Kumar
    Bhattacharyya, Jayanta
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2014, 15 : 145 - 156
  • [32] On the Generalized Strongly Nil-Clean Property of Matrix Rings
    Kostic, Aleksandra S.
    Petrovic, Zoran Z.
    Pucanovic, Zoran S.
    Roslavcev, Maja
    ALGEBRA COLLOQUIUM, 2021, 28 (04) : 625 - 634
  • [33] Rings Whose Invertible Elements Are Weakly Nil-Clean
    Danchev, Peter
    Hasanzadeh, Omid
    Javan, Arash
    Moussavi, Ahmad
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2024, 56 (05): : 208 - 228
  • [34] Nil clean rings
    Diesl, Alexander J.
    JOURNAL OF ALGEBRA, 2013, 383 : 197 - 211
  • [35] Rings Whose Non-Invertible Elements Are Strongly Nil-Clean
    Danchev, P.
    Hasanzadeh, O.
    Javan, A.
    Moussavi, A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (10) : 4980 - 5001
  • [36] RINGS WHOSE NON-INVERTIBLE ELEMENTS ARE WEAKLY NIL-CLEAN
    Danchev, P.
    Hasanzadeh, O.
    Javan, A.
    Moussavi, A.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2025, 35 (01): : 47 - 74
  • [37] ; ON NIL - SEMI CLEAN RINGS
    Ahmad, Mohamed Kheir
    Al-Mallah, Omar
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2009, 2 (02): : 95 - 103
  • [38] On graded nil clean rings
    Ilic-Georgijevic, Emil
    Sahinkaya, Serap
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (09) : 4079 - 4089
  • [39] Ideally nil clean rings
    Gorman, Alexi Block
    Diesl, Alexander
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (11) : 4788 - 4799
  • [40] Nil Clean Graphs of Rings
    Basnet, Dhiren Kumar
    Bhattacharyya, Jayanta
    ALGEBRA COLLOQUIUM, 2017, 24 (03) : 481 - 492