NUMERICAL METHODS OF HIGH-ORDER ACCURACY FOR ONE-DIMENSIONAL DIFFUSION EQUATION

被引:12
|
作者
HENNART, JP [1 ]
机构
[1] UNIV LIBRE BRUSSELS,BRUSSELS,BELGIUM
关键词
D O I
10.13182/NSE73-A28971
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
引用
收藏
页码:185 / 199
页数:15
相关论文
共 50 条
  • [21] High-order bandgaps in one-dimensional photonic crystals
    Morozov, G. V.
    Placido, F.
    JOURNAL OF OPTICS, 2010, 12 (04)
  • [22] High-Order Numerical Solution of Second-Order One-Dimensional Hyperbolic Telegraph Equation Using a Shifted Gegenbauer Pseudospectral Method
    Elgindy, Kareem T.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (01) : 307 - 349
  • [23] High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods
    Mohebbi, Akbar
    Dehghan, Mehdi
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (5-6) : 537 - 549
  • [24] On the numerical solution of the one-dimensional convection-diffusion equation
    Dehghan, M
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2005, (01) : 61 - 74
  • [25] Numerical methods for time-fractional convection-diffusion problems with high-order accuracy
    Dong, Gang
    Guo, Zhichang
    Yao, Wenjuan
    OPEN MATHEMATICS, 2021, 19 (01): : 782 - 802
  • [26] High-order accurate, low numerical diffusion methods for aerodynamics
    Ekaterinaris, JA
    PROGRESS IN AEROSPACE SCIENCES, 2005, 41 (3-4) : 192 - 300
  • [27] A one-dimensional high-order commensurate phase of tilted molecules
    Thomas, Anthony
    Leoni, Thomas
    Siri, Olivier
    Becker, Conrad
    Unzog, Martin
    Kern, Christian
    Puschnig, Peter
    Zeppenfeld, Peter
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (16) : 9118 - 9122
  • [28] High-order finite volume modelling of one-dimensional flows
    Cozzolino, L.
    Pianese, D.
    RIVER FLOW 2006, VOLS 1 AND 2, 2006, : 493 - +
  • [29] Locally one-dimensional difference schemes for the fractional order diffusion equation
    M. M. Lafisheva
    M. Kh. Shkhanukov-Lafishev
    Computational Mathematics and Mathematical Physics, 2008, 48 : 1875 - 1884
  • [30] Locally One-Dimensional Difference Schemes for the Fractional Order Diffusion Equation
    Lafisheva, M. M.
    Shkhanukov-Lafishev, M. Kh.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (10) : 1875 - 1884