A C-1 TRIANGULAR INTERPOLANT SUITABLE FOR SCATTERED DATA INTERPOLATION

被引:26
|
作者
GOODMAN, TNT [1 ]
SAID, HB [1 ]
机构
[1] UNIV SAINS MALAYSIA,SCH MATH & COMP SCI,GEORGE TOWN 11800,MALAYSIA
来源
关键词
D O I
10.1002/cnm.1630070608
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present here a method of constructing a triangle interpolant which interpolates position and partial derivatives specified at the three vertices of the triangle. The method employs the cubic Bezier triangular patch technique. The data given enable us to determine the appropriate Bezier control points so that adjacent patches meet with C1 continuity. However, the interior control point for the patch is replaced by three separate points, due to the implementation of three local schemes, each of which satisfies the boundary conditions on only one side of the triangle. Convex combination is used to blend these three local schemes.
引用
下载
收藏
页码:479 / 485
页数:7
相关论文
共 50 条
  • [31] Extremal Scattered Data Interpolation in R3 Using Triangular Bezier Surfaces
    Vlachkova, Krassimira
    NUMERICAL METHODS AND APPLICATIONS (NMA 2014), 2015, 8962 : 304 - 311
  • [32] DESIGNING C-1 SURFACES CONSISTING OF TRIANGULAR CUBIC PATCHES
    FARIN, G
    COMPUTER-AIDED DESIGN, 1982, 14 (05) : 253 - 256
  • [33] C-1 comonotone hermite interpolation via parametric cubics
    Manni, C
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 69 (01) : 143 - 157
  • [34] Pluriharmonic interpolation and hulls of C-1 curves in the unit sphere
    Alexander, Herbert
    Bruna, Joaquim
    REVISTA MATEMATICA IBEROAMERICANA, 1995, 11 (03) : 547 - 568
  • [35] Scattered data interpolation of Radon data
    Beatson, R. K.
    Castell, W. Zu
    CALCOLO, 2011, 48 (01) : 5 - 19
  • [36] C1-rational interpolation method for scattered data fitting on a circle and a sphere
    Institute of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
    J. Inf. Comput. Sci., 2006, 1 (73-81):
  • [37] Scattered data interpolation of Radon data
    R. K. Beatson
    W. zu Castell
    Calcolo, 2011, 48 : 5 - 19
  • [38] Construction of new cubic Bezier-like triangular patches with application in scattered data interpolation
    Karim, Samsul Ariffin Abdul
    Saaban, Azizan
    Skala, Vaclav
    Ghaffar, Abdul
    Nisar, Kottakkaran Sooppy
    Baleanu, Dumitru
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [40] Scattered data interpolation applying rational quadratic C1 splines on refined triangulations
    Schmidt, JW
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 (01): : 27 - 33