A NOTE ON GRAPHS AND SPHERE ORDERS

被引:5
|
作者
SCHEINERMAN, ER
机构
[1] Department of Mathematical Sciences, Johns Hopkins University, Baltimore, Maryland
关键词
D O I
10.1002/jgt.3190170303
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A partially ordered set P is called a k-sphere order if one can assign to each element a is-element-of P a ball B(a) in R(k) so that a < b iff B(a) subset-of B(b). To a graph G = (V, E) associate a poset P(G) whose elements are the vertices and edges of G. We have v < e in P(G) exactly when v is-an-element-of V, e is-an-element-of E, and v is an end point of e. We show that P(G) is a 3-sphere order for any graph G. It follows from E. R. Scheinerman [''A Note on Planar Graphs and Circle Orders, '' SIAM Journal of Discrete Mathematics, Vol. 4 (1991), pp. 448-451] that the least k for which G embeds in R(k) equals the least k for which P(G) is a k-sphere order. For a simplicial complex Kone can define P(K) by analogy to P(G) (namely, the face containment order). We prove that for each 2-dimensional simplicial complex K, there exists a k so that P(K) is a k-sphere order.
引用
收藏
页码:283 / 289
页数:7
相关论文
共 50 条
  • [31] On the orders of arc-transitive graphs
    Conder, Marston D. E.
    Li, Cai Heng
    Potocnik, Primoz
    JOURNAL OF ALGEBRA, 2015, 421 : 167 - 186
  • [32] Proper and unit trapezoid orders and graphs
    Bogart, KP
    Möhring, RH
    Ryan, SP
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1998, 15 (04): : 325 - 340
  • [33] New invariants for permutations, orders and graphs
    Aval, Jean-Christophe
    Bergeron, Nantel
    Machacek, John
    ADVANCES IN APPLIED MATHEMATICS, 2020, 121 (121)
  • [34] A CHARACTERIZATION OF PLANAR GRAPHS BY TREMAUX ORDERS
    DEFRAYSSEIX, H
    ROSENSTIEHL, P
    COMBINATORICA, 1985, 5 (02) : 127 - 135
  • [35] Analytic partial orders and oriented graphs
    Louveau, Alain
    FUNDAMENTA MATHEMATICAE, 2006, 192 (03) : 233 - 243
  • [36] Proper and unit bitolerance orders and graphs
    Bogart, KP
    Isaak, G
    DISCRETE MATHEMATICS, 1998, 181 (1-3) : 37 - 51
  • [37] Encoding !-tensors as !-graphs with neighbourhood orders
    Quick, David
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2015, (195): : 307 - 320
  • [38] Interval k-Graphs and Orders
    David E. Brown
    Breeann M. Flesch
    Larry J. Langley
    Order, 2018, 35 : 495 - 514
  • [39] INTERVAL-GRAPHS AND INTERVAL ORDERS
    FISHBURN, PC
    DISCRETE MATHEMATICS, 1985, 55 (02) : 135 - 149
  • [40] On CCE graphs of doubly partial orders
    Kim, Seog-Jin
    Kim, Suh-Ryung
    Rho, Yoomi
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (08) : 971 - 978