AUTOMATIC CONTOURING USING BICUBIC FUNCTIONS

被引:19
|
作者
HESSING, RC
PIERCE, A
POWERS, EN
LEE, HK
机构
[1] Amoco Production Company, Tulsa,OK,74102, United States
关键词
Contour measurement;
D O I
10.1190/1.1440290
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A method is described for using a digital computer to construct contour maps automatically. Contour lines produced by this method have correct relations to given discrete data points regardless of the spatial distribution of these points. The computer-generated maps are comparable to those drawn manually. The region to be contoured is divided into quadrilaterals whose vertices include the data points. After supplying values at each of the remaining vertices by using a surface-fitting technique, bicubic functions are constructed on each quadrilateral to form a smooth surface through the data points. Points on a contour line are obtained from these surfaces by solving the resulting cubic equations. The bicubic functions may be used for other calculations consistent with the contour maps, such as interpolation of equally spaced values, calculation of cross-sections, and volume calculations. © 1972 Society of Exploration Geophysicists.
引用
收藏
页码:669 / &
相关论文
共 50 条
  • [31] QUADTREE ALGORITHMS FOR CONTOURING FUNCTIONS OF 2 VARIABLES
    SUFFERN, KG
    COMPUTER JOURNAL, 1990, 33 (05): : 402 - 407
  • [32] Optimization of an Automatic Image Contouring System for Radiation Therapy
    Hamilton, T.
    Nedialkov, N.
    Wierzbicki, M.
    MEDICAL PHYSICS, 2012, 39 (07) : 4637 - 4637
  • [33] THE ANALYSIS OF RESULTS OF THE LEFT VENTRICLE CONTOURING USING AUTOMATIC ALGORITHM ON ULTRASOUND IMAGES FOR PATIENTS WITH PATHOLOGIES
    Bobkova, A. O.
    Porshnev, S., V
    Zuzin, V. V.
    Bobkov, V. V.
    2014 24TH INTERNATIONAL CRIMEAN CONFERENCE MICROWAVE & TELECOMMUNICATION TECHNOLOGY (CRIMICO), 2014, : 1073 - 1074
  • [34] Comparison of automatic Segmentation Tools for Contouring Risk Organs
    Cinar, E.
    Friedrich, A. L.
    Zink, K.
    Boettcher, M.
    Engenhart-Cabillic, R.
    Vorwerk, H.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2017, 193 : S124 - S124
  • [35] Automatic contouring in 4D radiation therapy
    Chao, M.
    Schreibmann, E.
    Li, T.
    Koong, A.
    Goodman, K. A.
    Xing, L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2006, 66 (03): : S649 - S649
  • [36] Automatic Head and Neck Contouring in the Routine Clinical Setting Using Deformable Image Registration Algorithms
    Kumarasiri, A. D.
    Kim, J.
    Liu, C.
    Pradhan, D. G.
    Yechieli, R.
    Shah, M.
    Chetty, I. J.
    Siddiqui, F.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2014, 90 : S106 - S107
  • [37] ESTIMATION OF A SURFACE WITH KNOWN DISCONTINUITIES FOR AUTOMATIC CONTOURING PURPOSES
    POUZET, J
    JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY, 1980, 12 (06): : 559 - 575
  • [38] APPLICATIONS OF DEEP LEARNING FOR AUTOMATIC CONTOURING OF TUMOURS IN THE BRAIN
    Henderson, Robert
    Giambattista, Joshua
    Venugopal, Niranjan
    Omene, Egiroh
    Giambattista, Jonathan
    Kundapur, Vijayananda
    RADIOTHERAPY AND ONCOLOGY, 2020, 150 : S34 - S34
  • [39] Evaluation of a model based segmentation algorithm for automatic contouring
    Chase, D.
    Ramsey, C.
    Seibert, R.
    Robison, B.
    MEDICAL PHYSICS, 2007, 34 (06) : 2551 - 2551
  • [40] Multicenter comparison of measures for quantitative evaluation of automatic contouring
    Brunenberg, E.
    van de Ven, J. Derks
    Gooding, M. J.
    Boukerroui, D.
    Gan, Y.
    Henderson, E.
    Sharp, G. C.
    Vaassen, F.
    Osorio, E. Vasquez
    Yang, J.
    Monshouwer, R.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S37 - S38