An ensemble Kalman filtering algorithm for state estimation of jump Markov systems

被引:0
|
作者
Vasuhi, S. [1 ]
Vaidehi, V. [1 ]
机构
[1] Anna Univ, MIT, Madras, Tamil Nadu, India
关键词
ensemble Kalman filter; EnKF; state estimation; jump Markov systems; modelling;
D O I
10.1504/IJESMS.2016.073301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a target model whose dynamics is modelled as a jump Markov process. The problem of state estimation of jump Markov system using ensemble Kalman filter (EnKF) is dealt here. The EnKF is designed for higher order nonlinear state estimation. In target tracking using jump process, accuracy of the state estimate is defined as a function of ensemble size. The jump Markov system minimises state error at the state estimation and assumes that all probability distributions involved are to be Gaussian. This paper proposes state estimation of jump Markov systems using EnKF, at each step the ensemble of state estimates are calculated. From the result, calculate the error statistics from ensemble forecasts which are dynamically propagated through nonlinear system.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [31] Iterative algorithms for optimal state estimation of jump Markov linear systems
    Univ of Cambridge, Cambridge, United Kingdom
    ICASSP IEEE Int Conf Acoust Speech Signal Process Proc, (2487-2490):
  • [32] Stochastic sampling algorithms for state estimation of jump Markov linear systems
    Doucet, A
    Logothetis, A
    Krishnamurthy, V
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (02) : 188 - 202
  • [33] Robust state estimation for jump Markov linear systems with missing measurements
    Li, Wenling
    Jia, Yingmin
    Du, Junping
    Zhang, Jun
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (06): : 1476 - 1487
  • [34] Iterative algorithms for optimal state estimation of Jump Markov linear systems
    Doucet, A
    Andrieu, C
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 2487 - 2490
  • [35] Kalman filtering design on systems with Markovian jump parameters
    Shi, Y
    Shi, P
    2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, 2000, : 450 - 455
  • [36] State Estimation in Linear Dynamical Systems By Partial Update Kalman Filtering
    Yaghoub Pourasad
    Vahid Vahidpour
    Amir Rastegarnia
    Parviz Ghorbanzadeh
    Saeid Sanei
    Circuits, Systems, and Signal Processing, 2022, 41 : 1188 - 1200
  • [37] State Estimation in Linear Dynamical Systems By Partial Update Kalman Filtering
    Pourasad, Yaghoub
    Vahidpour, Vahid
    Rastegarnia, Amir
    Ghorbanzadeh, Parviz
    Sanei, Saeid
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (02) : 1188 - 1200
  • [38] A Bayesian filtering algorithm in Jump Markov Systems with application to Track-Before-Detect
    Bardel, Noemie
    Abbassi, Noufel
    Desbouvries, Francois
    Pieczynski, Wojciech
    Barbaresco, Frederic
    2010 IEEE RADAR CONFERENCE, 2010, : 1397 - 1402
  • [39] Ensemble Kalman filtering
    Houtekamer, P. L.
    Mitchell, Herschel L.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) : 3269 - 3289
  • [40] A novel method for state-of-charge estimation for battery with kalman filtering algorithm
    Ji, Bingcheng
    Zhang, Li
    Zhang, Haoran
    Yuan, Jinlei
    ICIC Express Letters, 2015, 9 (09): : 2409 - 2414