Prediction of outcome in breast cancer patients using test parameters from complete blood count

被引:18
|
作者
Zhang, Pingping [1 ]
Zong, Yulong [1 ]
Liu, Mohan [2 ]
Tai, Yanhong [3 ]
Cao, Yuan [1 ]
Hu, Chengiin [1 ]
机构
[1] Gen Hosp Jinan Mil Reg, Dept Lab Med, 25 Shifan Rd, Jinan 250031, Shandong, Peoples R China
[2] Chinese Peoples Liberat Army Gen Hosp, Dept Cardiol, Beijing 100853, Peoples R China
[3] Gen Hosp Jinan Mil Reg, Dept Pathol, Jinan 250031, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
breast cancer; red cell indices; mean corpuscular hemoglobin; neutrophil-to-lymphocyte ratio; prognosis;
D O I
10.3892/mco.2016.827
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The aim of this study was to evaluate the prognostic effect of test parameters from pretreatment complete blood count (CBC) for predicting outcome in breast cancer patients. A total of 162 patients with breast cancer and a long follow-up were enrolled in this study. Red cell indices (RCIs) and neutrophil-lymphocyte ratio (NLR) from CBC prior to treatment, as well as related clinical data, were retrospectively collected. We evaluated the association of RCI and NLR with tumor size, clinical stage, histological grade, estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 status. We further performed survival analysis and Cox multivariate analysis, stratified by RCI and NLR median values, to evaluate their prognostic effects. In the disease-free survival (DFS) analysis, patients in the higher mean corpuscular hemoglobin (MCH) and NLR groups exhibited shorter DFS times compared with those in the lower MCH and NLR groups (P=0.017 for MCH and P=0.039 for NLR). The univariate analysis revealed that both MCH and NLR were significantly associated with DFS. The Cox multivariate analysis demonstrated that only MCH was an independent predictor associated with disease relapse (hazard ratio = 1.975, 95% confidence interval: 1.118-3.487, P=0.019), whereas no index was associated with overall survival. Our results suggest that MCH prior to treatment may be a predictive marker associated with DFS in breast cancer.
引用
收藏
页码:918 / 924
页数:7
相关论文
共 50 条
  • [21] Complete Blood Count Parameters to Predict COVID-19 Severity in Pediatric Patients
    Demir, Sevliya Ocal
    Bucak, Abdulmelik
    Ustun, Nuran
    Duyu, Muhterem
    Arslanoglu, Sertac
    Ovali, Fahri
    JOURNAL OF PEDIATRIC INFECTION, 2022, 16 (02): : E87 - E94
  • [22] Complete blood count parameters and inflammation-related biomarkers in patients with colorectal carcinoma
    Korzinek, Martha
    Celap, Ivana
    Fabijanec, Marija
    Zanic, Tena
    Ljubicic, Neven
    Barsic, Neven
    Verbanac, Donatella
    Barisic, Karmela
    Rajkovic, Marija Grdic
    ACTA PHARMACEUTICA, 2024,
  • [23] Development and Validation of an Early Scoring System for Prediction of Disease Severity in COVID-19 Using Complete Blood Count Parameters
    Rahman, Tawsifur
    Khandakar, Amith
    Hoque, Md Enamul
    Ibtehaz, Nabil
    Bin Kashem, Saad
    Masud, Reehum
    Shampa, Lutfunnahar
    Hasan, Mohammad Mehedi
    Islam, Mohammad Tariqul
    Al-Maadeed, Somaya
    Zughaier, Susu M.
    Badran, Saif
    Doi, Suhail A. R.
    Chowdhury, Muhammad E. H.
    IEEE ACCESS, 2021, 9 : 120422 - 120441
  • [24] Usefulness of complete blood count parameters to predict poor outcomes in cancer patients with febrile neutropenia presenting to the emergency department
    Choi, Arom
    Park, Incheol
    Lee, Hye Sun
    Chung, Jinseok
    Kim, Min Joung
    Park, Yoo Seok
    ANNALS OF MEDICINE, 2022, 54 (01) : 599 - 609
  • [25] Reference range evaluation of complete blood count parameters with emphasis on newer research parameters on the complete blood count analyzer Sysmex XE-2100
    Sehgal, Kunal K.
    Tina, Dadu
    Choksey, Urmi
    Dalal, Reeta J.
    Shanaz, Khodaiji J.
    INDIAN JOURNAL OF PATHOLOGY AND MICROBIOLOGY, 2013, 56 (02) : 120 - 124
  • [26] Pretreatment Complete Blood Count Improves Prognostic Model Survival Prediction in Oropharyngeal Cancer Patients Treated With Radiation Therapy
    Mohamed, A. S. R.
    Shoultz-Henley, S.
    Garden, A. S.
    Sheu, T.
    Kroll, M.
    Rosenthal, D. I.
    Gunn, G. B.
    Phan, J.
    Lai, S.
    Kies, M. S.
    Gold, K. A.
    Sturgis, E. M.
    Fuller, C. D.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 94 (04): : 964 - 964
  • [27] Machine Learning-Based Prediction of Hemoglobinopathies Using Complete Blood Count Data
    Schipper, Anoeska
    Rutten, Matthieu
    van Gammeren, Adriaan
    Harteveld, Cornelis L.
    Urrechaga, Eloisa
    Weerkamp, Floor
    den Besten, Gijs
    Krabbe, Johannes
    Slomp, Jennichjen
    Schoonen, Lise
    Broeren, Maarten
    van Wijnen, Merel
    Huijskens, Mirelle J. A. J.
    Koopmann, Tamara
    van Ginneken, Bram
    Kusters, Ron
    Kurstjens, Steef
    CLINICAL CHEMISTRY, 2024, 70 (08) : 1064 - 1075
  • [28] Early Prediction of Bloodstream Infection with Complete Blood Count Parameters: an Ex-Vivo Human Whole Blood Model
    Ignak, Seyda
    Unay-Demirel, Ozlem
    Yuksel, Meral
    CLINICAL LABORATORY, 2024, 70 (04) : 725 - 731
  • [29] A complete blood count as a prognostic marker in patients with metastatic colorectal cancer (mCRC)
    Krakowska, M.
    Debska-Szmich, S.
    Czernek, U.
    Czyzykowski, R.
    Potemski, P.
    ANNALS OF ONCOLOGY, 2016, 27 : 9 - 10
  • [30] The Value of ABO Blood Group and Complete Blood Count for the Prognosis Analysis of Gastric Cancer Patients
    Sun, Xiao-jie
    Ai, Le
    Feng, Yang-chun
    ONCOTARGETS AND THERAPY, 2020, 13 : 4627 - 4633