ON PERFECT 2-COLORINGS OF THE HYPERCUBE

被引:0
|
作者
Vorobev, K. V. [1 ]
Fon-Der-Flaass, D. G. [2 ]
机构
[1] Novosibirsk State Univ, Pirogova St 2, Novosibirsk 630090, Russia
[2] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk 630090, Russia
关键词
Hypercube; perfect coloring; perfect code;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vertex coloring of a graph is called perfect if the multiset of colors appearing on the neighbours of any vertex depends only on the color of the vertex. The parameters of a perfect coloring are thus given by a n x n matrix, where n is the number of colors. We give a recursive construction which can produce many different perfect colorings of the hypercube H-n with 2 colors and the parameters parameters ((a)(c) (b)(d)) satisfying the conditions (b, c) = 1, b + c = 2(m), c > 1. In particular, this construction allows one to find many non-isomorphic perfect colorings with the parameters ((k.a)(k.c) (k.b)(k.d)). For the parameters ((a)(c) (b)(d)) satisfying the extra condition a >= c - (b, c), we find a lower bound on the number of produced colorings which is hyperexponential in n.
引用
收藏
页码:65 / 75
页数:11
相关论文
共 50 条