DEPENDENCE OF DRAG ON A GALILEAN INVARIANCE-BREAKING PARAMETER IN LATTICE BOLTZMANN FLOW SIMULATIONS

被引:6
|
作者
WAGNER, L
机构
[1] Department of Physics, Ohio State University, Columbus
来源
PHYSICAL REVIEW E | 1994年 / 49卷 / 03期
关键词
D O I
10.1103/PhysRevE.49.2115
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present two-dimensional lattice Boltzmann simulations of flow past a cylinder which show that the drag coefficient is proportional to the factor multiplying the convective term in the Navier-Stokes-like equations obtained for Boolean lattice gases and for certain lattice Boltzmann models. With the correct expression for the drag coefficient, we show that the results of previous Boolean lattice-gas studies of drag agree with experiment and with each other.
引用
下载
收藏
页码:2115 / 2118
页数:4
相关论文
共 50 条
  • [1] Galilean invariance of lattice Boltzmann models
    Nie, X. B.
    Shan, X.
    Chen, H.
    EPL, 2008, 81 (03)
  • [2] Cross Correlators and Galilean Invariance in Fluctuating Ideal Gas Lattice Boltzmann Simulations
    Koehler, Goetz
    Wagner, Alexander
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 9 (05) : 1315 - 1322
  • [3] Entropy and Galilean invariance of lattice Boltzmann theories
    Chikatamarla, Shyam S.
    Karlin, Iliya V.
    PHYSICAL REVIEW LETTERS, 2006, 97 (19)
  • [4] Lattice Boltzmann method with restored Galilean invariance
    Prasianakis, N. I.
    Karlin, I. V.
    Mantzaras, J.
    Boulouchos, K. B.
    PHYSICAL REVIEW E, 2009, 79 (06):
  • [5] Fourth order Galilean invariance for the lattice Boltzmann method
    Geier, Martin
    Pasquali, Andrea
    COMPUTERS & FLUIDS, 2018, 166 : 139 - 151
  • [6] Investigation of Galilean invariance of multi-phase lattice Boltzmann methods
    Wagner, AJ
    Li, Q
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 362 (01) : 105 - 110
  • [7] Filtered lattice Boltzmann collision formulation enforcing isotropy and Galilean invariance
    Chen, Hudong
    Zhang, Raoyang
    Gopalakrishnan, Pradeep
    PHYSICA SCRIPTA, 2020, 95 (03)
  • [8] Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability
    Lallemand, P
    Luo, LS
    PHYSICAL REVIEW E, 2000, 61 (06): : 6546 - 6562
  • [9] Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method
    Peng, Cheng
    Geneva, Nicholas
    Guo, Zhaoli
    Wang, Lian-Ping
    PHYSICAL REVIEW E, 2017, 95 (01)
  • [10] Lattice Boltzmann algorithms without cubic defects in Galilean invariance on standard lattices
    Dellar, Paul J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 259 : 270 - 283