Galilean invariance of lattice Boltzmann models

被引:73
|
作者
Nie, X. B. [1 ]
Shan, X. [1 ]
Chen, H. [1 ]
机构
[1] Exa Corp, Burlington, MA 01803 USA
关键词
D O I
10.1209/0295-5075/81/34005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is well known that the original lattice Boltzmann (LB) equation deviates from the Navier-Stokes equations due to an unphysical velocity-dependent viscosity. This unphysical dependence violates the Galilean invariance and limits the validation domain of the LB method to near incompressible flows. As previously shown, recovery of correct transport phenomena in kinetic equations depends on the higher hydrodynamic moments. In this letter, we give specific criteria for recovery of various transport coefficients. The Galilean invariance of a general class of LB models is demonstrated via numerical experiments. Copyright (C) EPLA, 2008.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [1] Entropy and Galilean invariance of lattice Boltzmann theories
    Chikatamarla, Shyam S.
    Karlin, Iliya V.
    PHYSICAL REVIEW LETTERS, 2006, 97 (19)
  • [2] Lattice Boltzmann method with restored Galilean invariance
    Prasianakis, N. I.
    Karlin, I. V.
    Mantzaras, J.
    Boulouchos, K. B.
    PHYSICAL REVIEW E, 2009, 79 (06):
  • [3] Recovery of Galilean invariance in thermal lattice Boltzmann models for arbitrary Prandtl number
    Chen, Hudong
    Gopalakrishnan, Pradeep
    Zhang, Raoyang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2014, 25 (10):
  • [4] Fourth order Galilean invariance for the lattice Boltzmann method
    Geier, Martin
    Pasquali, Andrea
    COMPUTERS & FLUIDS, 2018, 166 : 139 - 151
  • [5] Complete Galilean invariant lattice Boltzmann models
    Chikatamarla, Shyam S.
    Karlin, Iliya V.
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (1-3) : 140 - 143
  • [6] Investigation of Galilean invariance of multi-phase lattice Boltzmann methods
    Wagner, AJ
    Li, Q
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 362 (01) : 105 - 110
  • [7] Filtered lattice Boltzmann collision formulation enforcing isotropy and Galilean invariance
    Chen, Hudong
    Zhang, Raoyang
    Gopalakrishnan, Pradeep
    PHYSICA SCRIPTA, 2020, 95 (03)
  • [8] Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability
    Lallemand, P
    Luo, LS
    PHYSICAL REVIEW E, 2000, 61 (06): : 6546 - 6562
  • [9] Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method
    Peng, Cheng
    Geneva, Nicholas
    Guo, Zhaoli
    Wang, Lian-Ping
    PHYSICAL REVIEW E, 2017, 95 (01)
  • [10] Lattice Boltzmann algorithms without cubic defects in Galilean invariance on standard lattices
    Dellar, Paul J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 259 : 270 - 283