OPTIMAL CONDITIONS AND BANG-BANG PRINCIPLE IN A STATE-RESTRICTED PARABOLIC CONTROL PROBLEM

被引:0
|
作者
MACKENROTH, U
机构
来源
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:T355 / T357
页数:3
相关论文
共 50 条
  • [31] BANG-BANG PROPERTY OF TIME OPTIMAL CONTROLS OF SEMILINEAR PARABOLIC EQUATION
    Kunisch, Karl
    Wang, Lijuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (01) : 279 - 302
  • [32] SENSITIVITY OF OPTIMAL CONTROL-SYSTEMS WITH BANG-BANG CONTROL
    ROOTENBERG, J
    COURTIN, P
    INTERNATIONAL JOURNAL OF CONTROL, 1973, 18 (03) : 537 - 543
  • [33] A MINIMUM PRINCIPLE AND A GENERALIZED BANG-BANG-PRINCIPLE FOR A DISTRIBUTED OPTIMAL-CONTROL PROBLEM WITH CONSTRAINTS ON CONTROL AND STATE
    TROLTZSCH, F
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1979, 59 (12): : 737 - 739
  • [34] Quantum time-optimal Bang-Bang control
    Wei, Peng
    Xi, Zairong
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 8122 - 8127
  • [35] Sufficient Optimality Conditions for a Bang-bang Trajectory in a Bolza Problem
    Poggiolini, Laura
    Spadini, Marco
    MATHEMATICAL CONTROL THEORY AND FINANCE, 2008, : 337 - 357
  • [36] BANG-BANG EXCITATION CONTROL
    RAJAGOPALAN, A
    HARIHARAN, MV
    IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1974, PA93 (02): : 703 - 711
  • [37] STOCHASTIC BANG-BANG CONTROL
    AHMED, NU
    TEO, KL
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (01) : 73 - 75
  • [38] On the “bang-bang” principle for nonlinear evolution inclusions
    A.A. Tolstonogov
    D.A. Tolstonogov
    Nonlinear Differential Equations and Applications NoDEA, 1999, 6 : 101 - 118
  • [39] BANG-BANG CONTROL IS FASTER
    STEADMAN, JF
    KOPPEL, LB
    HYDROCARBON PROCESSING, 1972, 51 (07): : 101 - &
  • [40] Multitime Controllability, Observability and Bang-Bang Principle
    C. Udrişte
    Journal of Optimization Theory and Applications, 2008, 139 : 141 - 157