ATP-SENSITIVE POTASSIUM CHANNEL AGONISTS DO NOT ALTER MAC FOR ISOFLURANE IN RATS

被引:5
|
作者
ZUCKER, JR [1 ]
机构
[1] UNIV WASHINGTON,SCH MED,DEPT ANESTHESIOL,SEATTLE,WA 98195
关键词
ANESTHETIC ACTION; THEORIES; ANESTHETICS; VOLATILE; ISOFLURANE; MEMBRANE; CELL; POTASSIUM CHANNEL; POTENCY; MAC;
D O I
10.1097/00000542-199204000-00012
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
The molecular mechanisms for general anesthesia are probably restricted to a sensitive set of target sites in the brain. Membrane hyperpolarization, brought about by increased potassium channel conductance, is coupled to opiate mu-receptors, to alpha(2)-adrenoceptors, and to muscarinic M2 receptors, all of which have anesthetic-sparing effects. One type of potassium channel, the ATP-sensitive potassium channel (IKATP) has well-known agonists: cromakalim and pinacidil. The effects on isoflurane minimum alveolar concentration (MAC) of intracerebroventricular injection of these IKATP agonists and of the alpha(2)-adrenoceptor agonist clonidine were studied in rats. Baseline MAC was 1.60% (+/- 0.02 SEM) isoflurane in oxygen. 10-mu-g clonidine decreased MAC by 42% of baseline (P < 0.05); 20-mu-g clonidine decreased MAC by 58% of baseline (P < 0.01). Neither cromakalim (20-mu-g) nor pinacidil (20-mu-g) had any effect on MAC. The results imply that neither indiscriminate agonist action of volatile anesthetics at potassium channels nor indiscriminate inhibitory membrane hyperpolarization is likely to be a fundamental mechanism of anesthesia. Furthermore, potassium channels coupled to opiate mu-receptors, to alpha(2) adrenoceptors, and to muscarinic M2 receptors are probably not the IKATP type.
引用
收藏
页码:560 / 563
页数:4
相关论文
共 50 条
  • [21] Early increases in renal kallikrein secretion on administration of potassium or ATP-sensitive potassium channel blockers in rats
    Fujita, T
    Hayashi, I
    Kumagai, Y
    Inamura, N
    Majima, M
    BRITISH JOURNAL OF PHARMACOLOGY, 1999, 128 (06) : 1275 - 1283
  • [22] ATP-sensitive inwardly inwardly rectifying potassium channel modulators alter cardiac function in honey bees
    O'Neal, Scott T.
    Swale, Daniel R.
    Blooniquist, Jeffrey R.
    Anderson, Troy D.
    JOURNAL OF INSECT PHYSIOLOGY, 2017, 99 : 95 - 100
  • [23] Characterization of the zebrafish as a model of ATP-sensitive potassium channel hyperinsulinism
    Juliana, Christine A.
    Benjet, Joshua
    De Leon, Diva D.
    BMJ OPEN DIABETES RESEARCH & CARE, 2024, 12 (02)
  • [24] Mechanisms of ATP-Sensitive Potassium Channel Overactivity in Cantu Mutants
    Cooper, Paige
    Sala-Rabanal, Monica
    Nichols, Colin
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 552A - 552A
  • [25] Mitochondrial ATP-sensitive potassium channel participation in spironolactone preconditioning
    Lores, C. C.
    Rodrigues, L. F., Jr.
    Carvalho, A. C. A.
    Carvalho, A. C. C.
    Nacimento, J. H. M.
    CIRCULATION, 2008, 118 (12) : E369 - E369
  • [26] Mitochondrial ATP-sensitive potassium channel: A novel site for neuroprotection
    Yamauchi, T
    Kashii, S
    Yasugoshi, H
    Zhang, S
    Honda, Y
    Akaike, A
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2003, 44 (06) : 2750 - 2756
  • [27] ATP-sensitive potassium channel function requires anionic phospholipids
    Fan, Z
    Makielski, JC
    CIRCULATION, 1996, 94 (08) : 3737 - 3737
  • [28] A Mitochondrial ATP-Sensitive Potassium Channel from the ROMK Family
    Foster, D. Brian
    Ho, Alice
    Garlid, Anders
    Rucker, Jasma
    Gucek, Marjan
    Cole, Robert
    Garlid, Keith
    O'Rourke, Brian
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 42 - 42
  • [29] Verapamil inhibits ATP-sensitive potassium channel activation in the coronaries
    Juhász-Nagy, A
    Kékesi, V
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2002, 34 (06) : A31 - A31
  • [30] Functional roles of ATP-sensitive potassium channel as related to anesthesia
    Takashi Kawano
    Journal of Anesthesia, 2012, 26 : 152 - 155