MAPPING THEOREMS ON CHI-SPACES

被引:9
|
作者
LIN, S [1 ]
机构
[1] SUZHOU UNIV,DEPT MATH,SUZHOU,PEOPLES R CHINA
关键词
D O I
10.1016/0166-8641(88)90014-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
下载
收藏
页码:159 / 164
页数:6
相关论文
共 50 条
  • [31] SOME WEAKLY CONTRACTIVE MAPPING THEOREMS IN PARTIALLY ORDERED SPACES AND APPLICATIONS
    Rhoades, B.
    Pathak, H.
    Mishra, S.
    DEMONSTRATIO MATHEMATICA, 2012, 45 (03) : 621 - 636
  • [33] FIXED POINT THEOREMS OF CONTRACTIVE MAPPING IN EXTENDED CONE METRIC SPACES
    Huang, Huaping
    Li, Xing
    INTEGRAL EQUATIONS, BOUNDARY VALUE PROBLEMS AND RELATED PROBLEMS: DEDICATED TO PROFESSOR CHIEN-KE LU ON THE OCCASION OF HIS 90TH BIRTHDAY, 2013, : 104 - 114
  • [34] Existence and convergence theorems for Berinde nonexpansive multivalued mapping on Banach spaces
    Bunlue, Nuttawut
    Suantai, Suthep
    AFRIKA MATEMATIKA, 2019, 30 (3-4) : 483 - 494
  • [35] Best proximity point theorems for weakly contractive mapping and weakly Kannan mapping in partial metric spaces
    Zhang, Jingling
    Su, Yongfu
    FIXED POINT THEORY AND APPLICATIONS, 2014,
  • [36] Best proximity point theorems for weakly contractive mapping and weakly Kannan mapping in partial metric spaces
    Jingling Zhang
    Yongfu Su
    Fixed Point Theory and Applications, 2014
  • [37] Weak and Strong Convergence Theorems for an alpha-Nonexpansive Mapping and a Generalized Nonexpansive Mapping in Hilbert Spaces
    Wattanawitoon, Kriengsak
    Khamlae, Yaowalux
    THAI JOURNAL OF MATHEMATICS, 2013, 11 (03): : 633 - 643
  • [38] FIXED SOFT POINT THEOREMS FOR GENERALIZED CONTRACTIVE MAPPING ON SOFT METRIC SPACES
    Abd-Rabou, K.
    Jafari, S.
    Halfa, I. K.
    Barakat, K.
    El Sayed, M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (02): : 571 - 578
  • [39] HUSAIN,T - OPEN MAPPING AND CLOSED GRAPH THEOREMS IN TOPOLOGICAL VECTOR SPACES
    ROBERTSO.AP
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (09): : 1156 - &
  • [40] Strong convergence theorems and a projection method using a balanced mapping in Hadamard spaces
    Kimura, Yasunori
    Ogihara, Tomoya
    FILOMAT, 2023, 37 (27) : 9287 - 9297