SOLUTION OF EULER EQUATIONS WITH UNSTRUCTURED MESH - 3D CASE

被引:0
|
作者
MORTCHELEWICZ, GD
机构
来源
RECHERCHE AEROSPATIALE | 1991年 / 06期
关键词
EULER EQUATIONS; SIMULATION; TRANSONIC FLOW; NUMERICAL FLOW;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
RM3D is a finite element program that solves 3D unsteady Euler equations. For aeroelastic applications, a small displacement hypothesis is used to simulate the motion of the airfoil, which allows us to keep a fixed mesh. An application for an aircraft (wing and fuselage) is presented. We compared the results with experimental data.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 50 条
  • [41] Implementation of a parallel unstructured 3D Euler solver on the CM-5
    Morano, E
    Mavriplis, DJ
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1997, 8 (02) : 93 - 98
  • [42] Efficient solution of Euler/N-S equations on unstructured grids
    Jiang, Yue-Wen
    Ye, Zheng-Yin
    Wang, Gang
    [J]. Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2012, 29 (02): : 217 - 223
  • [43] A GRID GENERATION AND FLOW SOLUTION METHOD FOR THE EULER EQUATIONS ON UNSTRUCTURED GRIDS
    ANDERSON, WK
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 110 (01) : 23 - 38
  • [44] Formation of singularities of spherically symmetric solutions to the 3D compressible Euler equations and Euler–Poisson equations
    Hai-Liang Li
    Yuexun Wang
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2018, 25
  • [45] Helical symmetry vortices for 3D incompressible Euler equations
    Cao, Daomin
    Lai, Shanfa
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 360 : 67 - 89
  • [46] TRAJECTORY ATTRACTORS FOR 3D DAMPED EULER EQUATIONS AND THEIR APPROXIMATION
    Ilyin, Alexei
    Kostianko, Anna
    Zelik, Sergey
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (08): : 2275 - 2288
  • [47] Deformation and Symmetry in the Inviscid SQG and the 3D Euler Equations
    Dongho Chae
    Peter Constantin
    Jiahong Wu
    [J]. Journal of Nonlinear Science, 2012, 22 : 665 - 688
  • [48] Towards a sufficient criterion for collapse in 3D Euler equations
    Kuznetsov, EA
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2003, 184 (1-4) : 266 - 275
  • [49] On the Local Type I Conditions for the 3D Euler Equations
    Dongho Chae
    Jörg Wolf
    [J]. Archive for Rational Mechanics and Analysis, 2018, 230 : 641 - 663
  • [50] A LEVEL SET FORMULATION FOR THE 3D INCOMPRESSIBLE EULER EQUATIONS
    Deng, Jian
    Hou, Thomas Y.
    Yu, Xinwei
    [J]. METHODS AND APPLICATIONS OF ANALYSIS, 2005, 12 (04) : 427 - 440