THE SET OF NASH EQUILIBRIA OF A SUPERMODULAR GAME IS A COMPLETE LATTICE

被引:65
|
作者
ZHOU, L
机构
[1] Cowles Foundation, Yale University, New Haven, CT 06520
关键词
D O I
10.1006/game.1994.1051
中图分类号
F [经济];
学科分类号
02 ;
摘要
A Tarski-type fixed point theorem for an ascending correspondence on a complete lattice is proved and then applied to show that the set of Nash equilibria of a supermodular game is a complete lattice. (C) 1994 Academic Press, Inc.
引用
收藏
页码:295 / 300
页数:6
相关论文
共 50 条
  • [21] TREE NASH EQUILIBRIA IN THE NETWORK CREATION GAME
    Mamageishvili, Akaki
    Mihalak, Matus
    Mueller, Dominik
    INTERNET MATHEMATICS, 2015, 11 (4-5) : 472 - 486
  • [22] Dominance of truthtelling and the lattice structure of Nash equilibria
    Bochet, Olivier
    Tumennasan, Norovsambuu
    JOURNAL OF ECONOMIC THEORY, 2020, 185
  • [23] Approximating the Set of Nash Equilibria for Convex Games
    Feinstein, Zachary
    Hey, Niklas
    Rudloff, Birgit
    OPERATIONS RESEARCH, 2024,
  • [24] Undominated coalition-proof Nash equilibria in quasi-supermodular games with monotonic externalities
    Shinohara, Ryusuke
    ECONOMICS LETTERS, 2019, 176 : 86 - 89
  • [25] The nonatomic supermodular game
    Yang, Jian
    Qi, Xiangtong
    GAMES AND ECONOMIC BEHAVIOR, 2013, 82 : 609 - 620
  • [26] Nash equilibria in the Showcase Showdown game with unlimited spins
    Bayon, L.
    Ayuso, P. Fortuy
    Grau, J. M.
    Oller-Marcen, A. M.
    Ruiz, M. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 497
  • [27] The structure and complexity of Nash equilibria for a selfish routing game
    Fotakis, D
    Kontogiannis, S
    Koutsoupias, E
    Mavronicolas, M
    Spirakis, P
    AUTOMATA, LANGUAGES AND PROGRAMMING, 2002, 2380 : 123 - 134
  • [28] Mixed-strategy equilibria in the Nash Demand Game
    David A. Malueg
    Economic Theory, 2010, 44 : 243 - 270
  • [29] Optimality and complexity of pure Nash equilibria in the coverage game
    Ai, Xin
    Srinivasan, Vikram
    Tham, Chen-Khong
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2008, 26 (07) : 1170 - 1182
  • [30] The expected number of Nash equilibria of a normal form game
    McLennan, A
    ECONOMETRICA, 2005, 73 (01) : 141 - 174