DIRAC STRUCTURES ON GENERALIZED RIEMANNIAN MANIFOLDS

被引:0
|
作者
Vaisman, Izu [1 ]
机构
[1] Univ Haifa, Dept Math, Haifa, Israel
关键词
generalized Riemannian structures; Dirac structures; generalized (para) complex structures; generalized tangent structures;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the Dirac structures that are parallel with respect to Gualtieri's canonical connection of a generalized Riemannian metric. On the other hand, we discuss Dirac structures that are images of generalized tangent structures. These structures turn out to be Dirac structures that, if seen as Lie algebroids, have a symplectic structure. In particular, if compatibility with a generalized Riemannian metric is required, the symplectic structure is of the Kahler type.
引用
收藏
页码:179 / 203
页数:25
相关论文
共 50 条
  • [11] Extrinsic eigenvalue estimates of Dirac operators on Riemannian manifolds
    Huang, Guangyue
    Chen, Li
    Sun, Xiaomei
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (2-3) : 273 - 286
  • [12] Homogeneous spin Riemannian manifolds with the simplest Dirac operator
    Gadea, P. M.
    Gonzalez-Davila, J. C.
    Oubina, J. A.
    ADVANCES IN GEOMETRY, 2018, 18 (03) : 289 - 302
  • [13] THE SYMMETRY OF spinC DIRAC SPECTRUMS ON RIEMANNIAN PRODUCT MANIFOLDS
    Hong, Kyusik
    Sung, Chanyoung
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (05) : 1037 - 1049
  • [14] The Einstein-Dirac equation on Riemannian spin manifolds
    Kim, EC
    Friedrich, T
    JOURNAL OF GEOMETRY AND PHYSICS, 2000, 33 (1-2) : 128 - 172
  • [15] The Dirac–Witten operator on pseudo-Riemannian manifolds
    Daguang Chen
    Oussama Hijazi
    Xiao Zhang
    Mathematische Zeitschrift, 2012, 271 : 357 - 372
  • [16] Dirac structures and paracomplex manifolds
    Wade, A
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (11) : 889 - 894
  • [17] INDUCED STRUCTURES ON THE PRODUCT OF RIEMANNIAN MANIFOLDS
    Tshikuna-Matamba, T.
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2011, 4 (01): : 15 - 25
  • [18] Riemannian manifolds with two circulant structures
    Dokuzova, Iva
    JOURNAL OF GEOMETRY, 2014, 105 (03) : 529 - 538
  • [19] Induced structures on Golden Riemannian manifolds
    Gherici B.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2018, 59 (4): : 761 - 777
  • [20] Generalized submonotonicity and approximately convexity in Riemannian manifolds
    F. Malmir
    A. Barani
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 299 - 323