DIRAC STRUCTURES ON GENERALIZED RIEMANNIAN MANIFOLDS

被引:0
|
作者
Vaisman, Izu [1 ]
机构
[1] Univ Haifa, Dept Math, Haifa, Israel
关键词
generalized Riemannian structures; Dirac structures; generalized (para) complex structures; generalized tangent structures;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the Dirac structures that are parallel with respect to Gualtieri's canonical connection of a generalized Riemannian metric. On the other hand, we discuss Dirac structures that are images of generalized tangent structures. These structures turn out to be Dirac structures that, if seen as Lie algebroids, have a symplectic structure. In particular, if compatibility with a generalized Riemannian metric is required, the symplectic structure is of the Kahler type.
引用
收藏
页码:179 / 203
页数:25
相关论文
共 50 条
  • [1] On generalized recurrent Riemannian manifolds
    Singh, H
    Khan, Q
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (1-2): : 87 - 95
  • [2] On generalized recurrent Riemannian manifolds
    K. Arslan
    U. C. De
    C. Murathan
    A. Yildiz
    Acta Mathematica Hungarica, 2009, 123 : 27 - 39
  • [3] On generalized recurrent Riemannian manifolds
    Arslan, K.
    De, U. C.
    Murathan, C.
    Yildiz, A.
    ACTA MATHEMATICA HUNGARICA, 2009, 123 (1-2) : 27 - 39
  • [4] ON GENERALIZED SEMISYMMETRIC RIEMANNIAN MANIFOLDS
    Mikes, Josef
    Stepanov, Sergey E.
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2013, 91
  • [5] Generalized conjugate connections and equiaffine structures on semi-Riemannian manifolds
    Min, Chol-Rim
    Ri, In-Ra
    Jong, Kang-Min
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 79
  • [6] The Dirac operator on locally reducible Riemannian manifolds
    Chen, Yongfa
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 139 : 17 - 24
  • [7] SEPARABILITY STRUCTURES OF RIEMANNIAN MANIFOLDS
    BENENTI, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (04): : 215 - 218
  • [8] Clifford structures on Riemannian manifolds
    Moroianu, Andrei
    Semmelmann, Uwe
    ADVANCES IN MATHEMATICS, 2011, 228 (02) : 940 - 967
  • [9] METALLIC STRUCTURES ON RIEMANNIAN MANIFOLDS
    Hretcanu, Cristina-Elena
    Crasmareanu, Mircea
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2013, 54 (02): : 15 - 27
  • [10] Generalized Geodesic Convexity on Riemannian Manifolds
    Ahmad, Izhar
    Khan, Meraj Ali
    Ishan, Amira A.
    MATHEMATICS, 2019, 7 (06)