SUPERSYMMETRY IN THE CAHN-HILLIARD-COOK THEORY

被引:10
|
作者
KLEIN, W
BATROUNI, GG
机构
[1] BOSTON UNIV, DEPT PHYS, BOSTON, MA 02215 USA
[2] UNIV CALIF LAWRENCE LIVERMORE NATL LAB, LIVERMORE, CA 94550 USA
关键词
D O I
10.1103/PhysRevLett.67.1278
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that the early stage of spinodal decomposition and continuous ordering is supersymmetric in systems with long-range interactions. Indeed, the Cahn-Hilliard-Cook linear theory can be described equivalently as an evolution of the order parameter (bosons) or objects that obey an exclusion principle (fermions). Coupled with a cluster representation of the Cahn-Hilliard-Cook theory, supersymmetry suggests a new physical picture of the early stage of spinodal decomposition and continuous ordering that provides a greater understanding of early-stage morphology, and could provide a basis for an improved description of the nonlinear regime.
引用
收藏
页码:1278 / 1281
页数:4
相关论文
共 50 条
  • [41] Evolution of pattern complexity in the Cahn-Hilliard theory of phase separation
    Gameiro, M
    Mischaikow, K
    Wanner, T
    ACTA MATERIALIA, 2005, 53 (03) : 693 - 704
  • [42] ON THE CAHN-HILLIARD EQUATION
    ELLIOTT, CM
    ZHENG, SM
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 96 (04) : 339 - 357
  • [43] Beyond the Cahn-Hilliard equation: a vacancy-based kinetic theory
    Nastar, Maylise
    SOLID-SOLID PHASE TRANSFORMATIONS IN INORGANIC MATERIALS, PTS 1-2, 2011, 172-174 : 321 - 330
  • [44] A further study on the coupled Allen–Cahn/Cahn–Hilliard equations
    Jiaqi Yang
    Changchun Liu
    Boundary Value Problems, 2019
  • [45] Stable phase interfaces in the van der Waals-Cahn-Hilliard theory
    Tonegawa, Yoshihiro
    Wickramasekera, Neshan
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 668 : 191 - 210
  • [46] Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory
    John E. Hutchinson
    Yoshihiro Tonegawa
    Calculus of Variations and Partial Differential Equations, 2000, 10 : 49 - 84
  • [47] THE ANISOTROPIC CAHN-HILLIARD EQUATION: REGULARITY THEORY AND STRICT SEPARATION PROPERTIES
    Garcke, Harald
    Knopf, Patrik
    Wittmann, Julia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (12): : 3622 - 3660
  • [48] Phase-field theory of multicomponent incompressible Cahn-Hilliard liquids
    Toth, Gyula I.
    Zarifi, Mojdeh
    Kvamme, Bjorn
    PHYSICAL REVIEW E, 2016, 93 (01)
  • [49] REMARKS ON THE GIBBS ADSORPTION EQUATION AND THE VANDERWAALS, CAHN-HILLIARD THEORY OF INTERFACES
    WIDOM, B
    PHYSICA A, 1979, 95 (01): : 1 - 11
  • [50] CAHN-HILLIARD VS SINGULAR CAHN-HILLIARD EQUATIONS IN SIMULATIONS OF IMMISCIBLE BINARY FLUIDS
    Chen, Lizhen
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (04): : 1050 - 1060