A WORST-CASE OF CIRCULARITY TEST ALGORITHMS FOR ATTRIBUTE GRAMMARS

被引:0
|
作者
WU, PC
WANG, FJ
机构
关键词
ALGORITHMS; LANGUAGES; THEORY; ATTRIBUTE GRAMMARS; CIRCULARITY TEST; DEPENDENCY GRAPHS;
D O I
10.1145/201059.201064
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Although the circularity test problem for attribute grammars (AGs) has been proven to be intrinsically exponential, to date, a worst case for the existing circularity test algorithms has yet to be presented. This note presents a worst-case AG in which the number of incomparable dependency graphs induced at the root is exponential. The worst case can help to clarify the complexity of the problem.
引用
收藏
页码:228 / 232
页数:5
相关论文
共 50 条
  • [31] Diaphony, discrepancy, spectral test and worst-case error
    Dick, J
    Pillichshammer, F
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2005, 70 (03) : 159 - 171
  • [32] WISE: Automated Test Generation for Worst-Case Complexity
    Burnim, Jacob
    Juvekar, Sudeep
    Sen, Koushik
    2009 31ST INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, PROCEEDINGS, 2009, : 463 - 473
  • [33] LOWER BOUNDS ON THE WORST-CASE COMPLEXITY OF SOME ORACLE ALGORITHMS
    HAUSMANN, D
    KORTE, B
    DISCRETE MATHEMATICS, 1978, 24 (03) : 261 - 276
  • [34] Worst-Case I/O-Efficient Skyline Algorithms
    Sheng, Cheng
    Tao, Yufei
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2012, 37 (04):
  • [35] Worst-case performance of two critical path type algorithms
    Singh, G
    Zinder, Y
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2000, 17 (01) : 101 - 122
  • [36] Lattice Algorithms for Multivariate L∞ Approximation in the Worst-Case Setting
    Frances Y. Kuo
    Grzegorz W. Wasilkowski
    Henryk Woźniakowski
    Constructive Approximation, 2009, 30 : 475 - 493
  • [37] On the worst-case analysis of temporal-difference learning algorithms
    Schapire, RE
    Warmuth, MK
    MACHINE LEARNING, 1996, 22 (1-3) : 95 - 121
  • [38] Worst-case performance of approximation algorithms for tool management problems
    Crama, Y
    van de Klundert, J
    NAVAL RESEARCH LOGISTICS, 1999, 46 (05) : 445 - 462
  • [39] Lattice Algorithms for Multivariate L∞ Approximation in the Worst-Case Setting
    Kuo, Frances Y.
    Wasilkowski, Grzegorz W.
    Wozniakowski, Henryk
    CONSTRUCTIVE APPROXIMATION, 2009, 30 (03) : 475 - 493
  • [40] Algorithms for max and min filters with improved worst-case performance
    Brookes, M
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 2000, 47 (09): : 930 - 935