On set colorings of complete bipartite graphs

被引:0
|
作者
Grueter, Steffen [1 ]
Holtkamp, Andreas [1 ]
Surmacst, Michel [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl C Mathemat, D-52056 Aachen, Germany
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In European J. Combin. 30 (2009), 986-995, S. M. Hegde recently introduced set colorings of a graph G as an assignment (function) of distinct subsets of a finite set X of colors to the vertices of G, where the colors of the edges are obtained as the symmetric difference of the sets assigned to their end vertices (which are also distinct). A set coloring is called a proper set coloring if all the nonempty subsets of X are obtained on the edges. A graph is called properly set colorable if it admits a proper set coloring. In this paper we give a proof for Hegde's conjecture that the complete bipartite graph K-a,K-b is properly set colorable if and only if one of the partition sets is of cardinality 1, and the other one of cardinality 2(n) - 1 for some positive integer n.
引用
收藏
页码:245 / 253
页数:9
相关论文
共 50 条
  • [41] Graphs and colorings for answer set programming
    Konczak, K
    Linke, T
    Schaub, T
    THEORY AND PRACTICE OF LOGIC PROGRAMMING, 2006, 6 : 61 - 106
  • [42] Set vertex colorings and joins of graphs
    Okamoto, Futaba
    Rasmussen, Craig W.
    Zhang, Ping
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (04) : 929 - 941
  • [43] Decompositions of complete graphs and complete bipartite graphs into isomorphic supersubdivision graphs
    Sethuraman, G
    Selvaraju, P
    DISCRETE MATHEMATICS, 2003, 260 (1-3) : 137 - 149
  • [44] ON γ-LABELINGS OF COMPLETE BIPARTITE GRAPHS
    Sanaka, Yuko
    ARS COMBINATORIA, 2013, 111 : 251 - 256
  • [45] Paintability of complete bipartite graphs
    Kashima, Masaki
    DISCRETE APPLIED MATHEMATICS, 2024, 346 : 279 - 289
  • [46] On the pagenumber of complete bipartite graphs
    Enomoto, H
    Nakamigawa, T
    Ota, K
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (01) : 111 - 120
  • [47] DECOMPOSITIONS OF COMPLETE BIPARTITE GRAPHS
    HAGGKVIST, R
    SURVEYS IN COMBINATORICS, 1989, 1989, 141 : 115 - 147
  • [48] Complete bipartite free graphs
    Cera, M
    Diánez, A
    García-Vázquez, P
    Valenzuela, JC
    ARS COMBINATORIA, 2003, 69 : 55 - 64
  • [49] ON PACKINGS OF COMPLETE BIPARTITE GRAPHS
    BEINEKE, LW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 277 - &
  • [50] THE INDUCIBILITY OF COMPLETE BIPARTITE GRAPHS
    BROWN, JI
    SIDORENKO, A
    JOURNAL OF GRAPH THEORY, 1994, 18 (06) : 629 - 645