AN UNCONDITIONALLY STABLE FINITE-ELEMENT TIME-DOMAIN SOLUTION OF THE VECTOR WAVE-EQUATION

被引:167
|
作者
GEDNEY, SD
NAVSARIWALA, U
机构
[1] Department of Electrical Engineering, University of Kentucky, Lexington
来源
基金
美国国家科学基金会;
关键词
D O I
10.1109/75.465046
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an implicit finite element time-domain (FETD) solution of the time-dependent vector wave equation, The time-dependent formulation employs a time-integration method based on the Newmark-Beta method, A stability analysis is presented demonstrating that this leads to an unconditionally stable solution of the time-dependent vector wave equation, The advantage of this formulation is that the time step is no longer governed by the spatial discretization of the mesh, but rather by the spectral content of the time-dependent signal, A numerical example of a three-dimensional cavity resonator is presented studying the effects of the Newmark-beta parameters on the solution error. Optimal choices of parameters are derived based on this example.
引用
收藏
页码:332 / 334
页数:3
相关论文
共 50 条
  • [31] WAVE-EQUATION MODEL FOR FINITE-ELEMENT TIDAL COMPUTATIONS
    LYNCH, DR
    GRAY, WG
    [J]. COMPUTERS & FLUIDS, 1979, 7 (03) : 207 - 228
  • [32] Parallel Implementation of Unconditionally Stable Discontinuous Galerkin Finite Element Time-domain Method
    Bao, Huaguang
    Ding, Dazhi
    Fan, Zhenhong
    Chen, Rushan
    [J]. 2016 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO), 2016,
  • [33] FINITE-ELEMENT METHODS FOR A STRONGLY DAMPED WAVE-EQUATION
    LARSSON, S
    THOMEE, V
    WAHLBIN, LB
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1991, 11 (01) : 115 - 142
  • [34] Performance of preconditioners for the distributed vector finite-element time-domain algorithm
    Nicolas, A
    Nicolas, L
    Vollaire, C
    Butrylo, B
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2005, 41 (05) : 1716 - 1719
  • [35] Numerical performance of the distributed vector finite-element time-domain algorithm
    Butrylo, B
    Vollaire, C
    Nicolas, L
    Nicolas, A
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) : 997 - 1000
  • [36] THE LARGE DIP WAVE-EQUATION MIGRATION IN TIME-DOMAIN
    WU, L
    [J]. ACTA GEOPHYSICA SINICA, 1980, 23 (03): : 320 - &
  • [38] An unconditionally stable parallel finite element time domain algorithm
    Navsariwala, UD
    Gedney, S
    [J]. IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - 1996 DIGEST, VOLS 1-3, 1996, : 112 - 115
  • [39] FINITE-ELEMENT TIDAL COMPUTATIONS USING A WAVE-EQUATION FORMULATION
    GRAY, WG
    LYNCH, DR
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1978, 59 (12): : 1106 - 1106
  • [40] A CONVERGENT FINITE-ELEMENT SCHEME FOR A WAVE-EQUATION WITH A MOVING BOUNDARY
    MARMORAT, JP
    PAYRE, G
    ZOLESIO, JP
    [J]. LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1992, 178 : 297 - 308