TORSION AND CURVATURE IN SMOOTH LOOPS

被引:0
|
作者
HOFMANN, KH
STRAMBACH, K
机构
[1] TH DARMSTADT,FACHBEREICH MATH,W-6100 DARMSTADT,GERMANY
[2] UNIV ERLANGEN NURNBERG,INST MATH,W-8520 ERLANGEN,GERMANY
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 1991年 / 38卷 / 3-4期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Lie group is flat with respect to its natural left invariant affine connection, and its torsion relates to the Lie bracket via T(X, Y) = -[X, Y]. A smooth loop is, roughly, a Lie group without associativity. Its tangent algebra at the origin has, in addition to the binary bracket, a ternary operation which is a measure of deviation from associativity locally. There are several ways of giving a smooth loop affine connections. There is one for which the torsion behaves like in groups while the curvature relates to the ternary operation of the tangent algebra via R(X, Y)(Z)e = -<X(e), Y(e), Z(e)> + <Y(e), X(e), Z(e)>.
引用
收藏
页码:189 / 214
页数:26
相关论文
共 50 条
  • [31] ON TORSION-FREE NILPOTENT LOOPS
    Mostovoy, Jacob
    Perez-Izquierdo, Jose M.
    Shestakov, Ivan P.
    QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (03): : 1091 - 1104
  • [32] On the diassociativity of smooth monoalternative loops
    Sabinin, LV
    RUSSIAN MATHEMATICAL SURVEYS, 1996, 51 (04) : 747 - 749
  • [33] On a Problem of the Theory of Smooth Loops
    L. L. Sabinina
    Mathematical Notes, 2003, 74 : 897 - 898
  • [34] Smooth loops and loop bundles
    Grigorian, Sergey
    ADVANCES IN MATHEMATICS, 2021, 393
  • [35] On a problem of the theory of smooth loops
    Sabinina, LL
    MATHEMATICAL NOTES, 2003, 74 (5-6) : 897 - 898
  • [36] TORSION AND CURVATURE FOR THE 6-COMMUTATOR
    Dzhumadil'daev, A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2009, 6 : 49 - 52
  • [37] Curvature and torsion in growing actin networks
    Shaevitz, Joshua W.
    Fletcher, Daniel A.
    PHYSICAL BIOLOGY, 2008, 5 (02)
  • [38] Sectional Curvature of Connections with Vectorial Torsion
    Klepikov, P. N.
    Rodionov, E. D.
    Khromova, O. P.
    RUSSIAN MATHEMATICS, 2020, 64 (06) : 75 - 79
  • [39] Torsion and curvature as commutator for quantum gravity
    de Sabbata, V
    Ronchetti, L
    Yu, A
    ADVANCES IN THE INTERPLAY BETWEEN QUANTUM AND GRAVITY PHYSICS, 2002, 60 : 85 - 101
  • [40] ON CURVATURE AND TORSION OF AN ISOLATED VORTEX FILAMENT
    BETCHOV, R
    JOURNAL OF FLUID MECHANICS, 1965, 22 : 471 - &