FINITE-SIZE EFFECTS IN THE APPROXIMATING HAMILTONIAN METHOD

被引:6
|
作者
BRANKOV, JG [1 ]
机构
[1] BULGARIAN ACAD SCI,INST MECH & BIOMECH,BU-1113 SOFIA,BULGARIA
来源
PHYSICA A | 1990年 / 168卷 / 03期
关键词
D O I
10.1016/0378-4371(90)90270-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Husimi-Temperley mean spherical model, in which each two particles interact with equal strength, is considered. This model is shown to be equivalent to a d-dimensional model with periodic boundary conditions and interaction potential σJσ(r), where Jσ(r) ∼ r-d-σ as r→∞, σ > 0 being a parameter, in the limit σ→0. It is found that the approximating Hamiltonian method yields singular finite-size scaling functions both in the neighbourhood of the critical point and near a first-order phase transition. A modification of this method is suggested, which allows for all the essential configurations and reproduces the exact finite-size scaling near a first-order phase transition. © 1990.
引用
收藏
页码:1035 / 1054
页数:20
相关论文
共 50 条
  • [21] FINITE-SIZE EFFECTS IN HEISENBERG ANTIFERROMAGNETS
    NEUBERGER, H
    ZIMAN, T
    PHYSICAL REVIEW B, 1989, 39 (04): : 2608 - 2618
  • [22] Finite-size effects in simulations of nucleation
    Wedekind, Jan
    Reguera, David
    Strey, Reinhard
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (21):
  • [23] FINITE-SIZE EFFECTS AT WETTING TRANSITIONS
    KROLL, DM
    GOMPPER, G
    PHYSICAL REVIEW B, 1989, 39 (01): : 433 - 445
  • [24] Finite-size effects in isobaric ratios
    Souza, S. R.
    Tsang, M. B.
    PHYSICAL REVIEW C, 2012, 85 (02):
  • [25] Finite-size effects on a lattice calculation
    Campos, Rafael G.
    Tututi, Eduardo S.
    PHYSICS LETTERS A, 2008, 372 (45) : 6717 - 6720
  • [27] Finite-size corrections for the pairing Hamiltonian - art. no. 094504
    Yuzbashyan, EA
    Baytin, AA
    Altshuler, BL
    PHYSICAL REVIEW B, 2005, 71 (09)
  • [28] Hamiltonian for the problem of vibrations of finite-size nanoobjects with a periodic structure: Oligomers
    L. A. Gribov
    Doklady Physics, 2015, 60 : 245 - 248
  • [29] Hamiltonian for the problem of vibrations of finite-size nanoobjects with a periodic structure: Oligomers
    Gribov, L. A.
    DOKLADY PHYSICS, 2015, 60 (06) : 245 - 248
  • [30] Finite-size correlation length and violations of finite-size scaling
    Caracciolo, S
    Gambassi, A
    Gubinelli, M
    Pelissetto, A
    EUROPEAN PHYSICAL JOURNAL B, 2001, 20 (02): : 255 - 265