NONLINEAR SCHRODINGER EQUATION INCLUDING GROWTH AND DAMPING

被引:272
|
作者
PEREIRA, NR [1 ]
STENFLO, L [1 ]
机构
[1] UNIV CALIF BERKELEY,LAWRENCE BERKELEY LAB,BERKELEY,CA 94720
关键词
D O I
10.1063/1.861773
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
引用
收藏
页码:1733 / 1734
页数:2
相关论文
共 50 条
  • [31] On Nonlinear Schrodinger-Type Equations with Nonlinear Damping
    Antonelli, Paolo
    Carles, Remi
    Sparber, Christof
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (03) : 740 - 762
  • [32] Solutions of a nonlinear Schrodinger equation
    deFigueiredo, DG
    Ding, YH
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (03) : 563 - 584
  • [33] Multifrequency nonlinear Schrodinger equation
    Castello-Lurbe, David
    Silvestre, Enrique
    Andres, Miguel V.
    OPTICS LETTERS, 2024, 49 (16) : 4713 - 4716
  • [34] KAM for the nonlinear Schrodinger equation
    Eliasson, L. Hakan
    Kuksin, Sergei B.
    ANNALS OF MATHEMATICS, 2010, 172 (01) : 371 - 435
  • [35] Fractional nonlinear Schrodinger equation
    Mendez-Navarro, Jesus A.
    Naumkin, Pavel I.
    Sanchez-Suarez, Isahi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [36] On Nonlinear Equation of Schrodinger type
    Soltanov, Kamal N.
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 923 - 932
  • [38] Collapse in the nonlinear Schrodinger equation
    Ovchinnikov, YN
    Sigal, IM
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 89 (01) : 35 - 40
  • [39] On the solution of the nonlinear Schrodinger equation
    Zayed, EME
    Zedan, HA
    CHAOS SOLITONS & FRACTALS, 2003, 16 (01) : 133 - 145
  • [40] Chiral nonlinear Schrodinger equation
    Nishino, A
    Umeno, Y
    Wadati, M
    CHAOS SOLITONS & FRACTALS, 1998, 9 (07) : 1063 - 1069