Wigner crystal physics in quantum wires

被引:108
|
作者
Meyer, Julia S. [1 ]
Matveev, K. A. [2 ]
机构
[1] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[2] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
关键词
NEAREST-NEIGHBOR INTERACTIONS; DIMENSIONAL ELECTRON-GAS; QUANTIZED CONDUCTANCE; SPIN POLARIZATION; CARBON NANOTUBES; POINT CONTACTS; LINEAR CHAIN; 2-BAND MODEL; EXCHANGE; TRANSPORT;
D O I
10.1088/0953-8984/21/2/023203
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The physics of interacting quantum wires has attracted a lot of attention recently. When the density of electrons in the wire is very low, the strong repulsion between electrons leads to the formation of a Wigner crystal. We review the rich spin and orbital properties of the Wigner crystal, in both the one-dimensional and the quasi-one-dimensional regimes. In the one-dimensional Wigner crystal the electron spins form an antiferromagnetic Heisenberg chain with exponentially small exchange coupling. In the presence of leads, the resulting inhomogeneity of the electron density causes a violation of spin-charge separation. As a consequence the spin degrees of freedom affect the conductance of the wire. Upon increasing the electron density, the Wigner crystal starts deviating from the strictly one-dimensional geometry, forming a zigzag structure instead. Spin interactions in this regime are dominated by ring exchanges, and the phase diagram of the resulting zigzag spin chain has a number of unpolarized phases as well as regions of complete and partial spin polarization. Finally we address the orbital properties in the vicinity of the transition from a one-dimensional to a quasi-one-dimensional state. Due to the locking between chains in the zigzag Wigner crystal, only one gapless mode exists. Manifestations of Wigner crystal physics at weak interactions are explored by studying the fate of the additional gapped low-energy mode as a function of interaction strength.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] QUANTUM FLUCTUATION OF A DISLOCATION IN A TWO-DIMENSIONAL WIGNER CRYSTAL
    KAWANO, M
    OHASHI, K
    OHASHI, YH
    FUKUCHI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1983, 52 (04) : 1298 - 1305
  • [32] QUANTUM TRANSPORT AND PINNING OF A ONE-DIMENSIONAL WIGNER CRYSTAL
    GLAZMAN, LI
    RUZIN, IM
    SHKLOVSKII, BI
    PHYSICAL REVIEW B, 1992, 45 (15): : 8454 - 8463
  • [33] A quantum solid made of electrons: observing the elusive Wigner crystal
    Tsui, Yen-Chen
    Yazdani, Ali
    NATURE, 2024,
  • [34] QUANTUM WIRES, QUANTUM BOXES AND RELATED STRUCTURES - PHYSICS, DEVICE POTENTIALS AND STRUCTURAL REQUIREMENTS
    SAKAKI, H
    SURFACE SCIENCE, 1992, 267 (1-3) : 623 - 629
  • [35] Wigner and Kondo physics in quantum point contacts revealed by scanning gate microscopy
    Brun, B.
    Martins, F.
    Faniel, S.
    Hackens, B.
    Bachelier, G.
    Cavanna, A.
    Ulysse, C.
    Ouerghi, A.
    Gennser, U.
    Mailly, D.
    Huant, S.
    Bayot, V.
    Sanquer, M.
    Sellier, H.
    NATURE COMMUNICATIONS, 2014, 5
  • [36] Wigner and Kondo physics in quantum point contacts revealed by scanning gate microscopy
    B. Brun
    F. Martins
    S. Faniel
    B. Hackens
    G. Bachelier
    A. Cavanna
    C. Ulysse
    A. Ouerghi
    U. Gennser
    D. Mailly
    S. Huant
    V. Bayot
    M. Sanquer
    H. Sellier
    Nature Communications, 5
  • [37] Electronic Wigner-molecule polymeric chains in elongated silicon quantum dots and finite-length quantum wires
    Goldberg, Arnon
    Yannouleas, Constantine
    Landman, Uzi
    PHYSICAL REVIEW APPLIED, 2024, 21 (06):
  • [38] Is the quantum melting of a polaron Wigner Crystal an insulator-to-superconductor transition ?
    Quémerais, P
    Fratini, S
    PHYSICA C, 2000, 341 : 229 - 232
  • [39] Holon Wigner Crystal in a Lightly Doped Kagome Quantum Spin Liquid
    Jiang, Hong-Chen
    Devereaux, T.
    Kivelson, S. A.
    PHYSICAL REVIEW LETTERS, 2017, 119 (06)
  • [40] Fractional Quantum Hall Effect and Wigner Crystal of Interacting Composite Fermions
    Liu, Yang
    Kamburov, D.
    Hasdemir, S.
    Shayegan, M.
    Pfeiffer, L. N.
    West, K. W.
    Baldwin, K. W.
    PHYSICAL REVIEW LETTERS, 2014, 113 (24)