LINEAR ESTIMATORS IN CHANGE-POINT PROBLEMS

被引:2
|
作者
HARTIGAN, JA
机构
来源
ANNALS OF STATISTICS | 1994年 / 22卷 / 02期
关键词
LINEAR ESTIMATORS; CHANGE POINT PROBLEMS;
D O I
10.1214/aos/1176325497
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Observations X(i) are uncorrelated with means theta(i), i = 1,...,n, and variances 1. The linear estimators theta = TX, for some n x n matrix T, are widely used in smoothing problems, where it is assumed that neighbouring parameter Values are similar The smoothness assumption is violated in change point problems, where neighbouring parameter values are equal, except at some unspecified change points where there are jumps of unknown size from one parameter value to the next. In the case of a single change point in one dimension, for any linear estimator, the expected sum of squared errors between estimates and parameters is of order root n for some choice of parameters, compared to order 1 for the least squares estimate. We show similar results for adaptive shift estimators, in which the linear estimator uses a kernel estimated from the data. Finally, for a change point problem in two dimensions, the expected sum of squared errors is of order n3/4.
引用
收藏
页码:824 / 834
页数:11
相关论文
共 50 条
  • [21] Nonparametric tests for nonstandard change-point problems
    Ferger, D
    ANNALS OF STATISTICS, 1995, 23 (05): : 1848 - 1861
  • [22] Two-stage change-point estimators in smooth regression models
    Muller, HG
    Song, KS
    STATISTICS & PROBABILITY LETTERS, 1997, 34 (04) : 323 - 335
  • [23] An evaluation of change-point estimators for a sequence of normal observations with unknown parameters
    Garza-Venegas, Jorge
    Tercero-Gomez, Victor
    Cordero Franco, Alvaro
    Temblador-Perez, Maria
    Beruvides, Mario
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (06) : 4297 - 4317
  • [24] Optimal rate of convergence for nonparametric change-point estimators for nonstationary sequences
    Ben Hariz, Samir
    Wylie, Jonathan J.
    Zhang, Qiang
    ANNALS OF STATISTICS, 2007, 35 (04): : 1802 - 1826
  • [25] Online Change-Point Detection of Linear Regression Models
    Geng, Jun
    Zhang, Bingwen
    Huie, Lauren M.
    Lai, Lifeng
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (12) : 3316 - 3329
  • [26] Multiple change-point analysis for linear regression models
    Loschi, Rosangela H.
    Pontel, Jeanne G.
    Cruz, Frederico R. B.
    CHILEAN JOURNAL OF STATISTICS, 2010, 1 (02): : 93 - 112
  • [27] Bootstrapping sequential change-point tests for linear regression
    Huskova, Marie
    Kirch, Claudia
    METRIKA, 2012, 75 (05) : 673 - 708
  • [28] Change-point detection in the marginal distribution of a linear process
    El Ktaibi, Farid
    Ivanoff, B. Gail
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 3945 - 3985
  • [29] Linear statistics in change-point estimation and their asymptotic behaviour
    Rukhin, AL
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1996, 24 (04): : 503 - 515
  • [30] Nonparametric Change-Point Problems and Optimal Nested Plans
    Feigin, Paul D.
    Lumelskii, Yan
    QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2012, 9 (02): : 115 - 135