THE STATE-ACTION PROBLEM

被引:0
|
作者
FREUND, PA
机构
关键词
D O I
暂无
中图分类号
C [社会科学总论];
学科分类号
03 ; 0303 ;
摘要
引用
收藏
页码:3 / 12
页数:10
相关论文
共 50 条
  • [21] Construct State-Action Map through Human Control Trajectories and Computation
    Duan, Feng
    Tan, Jeffrey Too Chuan
    Zhang, Ye
    Arai, Tamio
    2008 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2008, : 804 - 809
  • [22] How Should Learning Classifier Systems Cover A State-Action Space?
    Nakata, Masaya
    Lanzi, Pier Luca
    Kovacs, Tim
    Browne, Will Neil
    Takadama, Keiki
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 3012 - 3019
  • [23] THE ANTITRUST STATE-ACTION DOCTRINE AFTER FISHER-V-BERKELEY
    GIFFORD, DJ
    VANDERBILT LAW REVIEW, 1986, 39 (05) : 1257 - 1306
  • [24] Efficient Reinforcement Learning Using State-Action Uncertainty with Multiple Heads
    Aizu, Tomoharu
    Oba, Takeru
    Ukita, Norimichi
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VIII, 2023, 14261 : 184 - 196
  • [25] Speeding up Tabular Reinforcement Learning Using State-Action Similarities
    Rosenfeld, Ariel
    Taylor, Matthew E.
    Kraus, Sarit
    AAMAS'17: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2017, : 1722 - 1724
  • [26] Low-rank State-action Value-function Approximation
    Rozada, Sergio
    Tenorio, Victor
    Marques, Antonio G.
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1471 - 1475
  • [27] Model-Based Reinforcement Learning Exploiting State-Action Equivalence
    Asadi, Mahsa
    Talebi, Mohammad Sadegh
    Bourel, Hippolyte
    Maillard, Odalric-Ambrym
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 204 - 219
  • [28] Jointly-Learned State-Action Embedding for Efficient Reinforcement Learning
    Pritz, Paul J.
    Ma, Liang
    Leung, Kin K.
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1447 - 1456
  • [29] Real-time Sequentially Decision for Optimal Action using Prediction of the State-Action Pair
    Sugimoto, Masashi
    Kurashige, Kentarou
    2014 INTERNATIONAL SYMPOSIUM ON MICRO-NANOMECHATRONICS AND HUMAN SCIENCE (MHS), 2014,
  • [30] Identification and Classification of State-Action Clusters of Car-Following Behavior
    Higgs, Bryan
    Abbas, Montasir
    2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2014, : 3151 - 3155