Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

被引:0
|
作者
Saiedinezhad, Somayeh [1 ]
机构
[1] Iran Univ Sci & Technol, Dept Math, Tehran, Iran
关键词
Hardy type inequality; Variable exponent Lebesgue space; Modular type inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent p(.) for the Hardy operator restricted to non-increasing function which is integral(infinity)(0) (1-x integral(x)(0) f(t)dt)(p(x)) v(x)dx <= C integral(infinity)(0) f (x)(p(x))u(x)dx, is studied. We show that the exponent p(.) for which these modular inequalities hold must have constant oscillation. Also we study the boundedness of integral operator T f (x) = f K (x, y) f (x)dy on L-p(.) when the variable exponent p(.) satisfies some uniform continuity condition that is named beta-controller condition and so multiple interesting results which can be seen as a generalization of the same classical results in the constant exponent case, derived.
引用
收藏
页码:29 / 38
页数:10
相关论文
共 50 条
  • [1] SOME MODULAR INEQUALITIES IN LEBESGUE SPACES WITH A VARIABLE EXPONENT
    Izuki, Mitsuo
    Noi, Takahiro
    Sawano, Yoshihiro
    [J]. TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2020, 174 (03) : 343 - 349
  • [2] Some Modular Inequalities in Lebesgue Spaces with Variable Exponent on the Complex Plane
    M. Izuki
    T. Koyama
    T. Noi
    Y. Sawano
    [J]. Mathematical Notes, 2019, 106 : 229 - 234
  • [3] Some Modular Inequalities in Lebesgue Spaces with Variable Exponent on the Complex Plane
    Izuki, M.
    Koyama, T.
    Noi, T.
    Sawano, Y.
    [J]. MATHEMATICAL NOTES, 2019, 106 (1-2) : 229 - 234
  • [4] Uniform Convexity in Variable Exponent Sobolev Spaces
    Bachar, Mostafa
    Khamsi, Mohamed A.
    Mendez, Osvaldo
    [J]. SYMMETRY-BASEL, 2023, 15 (11):
  • [5] Continuity of Sobolev functions of variable exponent on metric spaces
    Mizuta, Y
    Shimomura, T
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2004, 80 (06) : 96 - 99
  • [6] On the equivalence of theK-functional and the modulus of continuity on the periodic variable exponent Morrey spaces
    Ghorbanalizadeh, Arash
    Seraji, Reza Roohi
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2020, 80 (02) : 185 - 194
  • [7] On the equivalence of the K-functional and the modulus of continuity on the periodic variable exponent Morrey spaces
    Arash Ghorbanalizadeh
    Reza Roohi Seraji
    [J]. Periodica Mathematica Hungarica, 2020, 80 : 185 - 194
  • [8] Poincar, and Sobolev Inequalities for Vector Fields Satisfying Hormander's Condition in Variable Exponent Sobolev Spaces
    Li, Xia
    Lu, Guo Zhen
    Tang, Han Li
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (07) : 1067 - 1085
  • [9] Weighted variable exponent grand Lebesgue spaces and inequalities of approximation
    Aydin, Ismail
    Akgun, Ramazan
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (01): : 199 - 215
  • [10] A mass transportation approach for Sobolev inequalities in variable exponent spaces
    Juan Pablo Borthagaray
    Julián Fernández Bonder
    Analía Silva
    [J]. manuscripta mathematica, 2016, 151 : 133 - 146