Advanced Helical Plasma Research towards a Steady-State Fusion Reactor by Deuterium Experiments in Large Helical Device

被引:12
|
作者
Takeiri, Yasuhiko [1 ,2 ]
机构
[1] Natl Inst Nat Sci, Natl Inst Fus Sci, 322-6 Oroshi, Toki, Gifu 5095292, Japan
[2] SOKENDAI Grad Univ Adv Studies, 322-6 Oroshi, Toki, Gifu 5095292, Japan
来源
ATOMS | 2018年 / 6卷 / 04期
关键词
Large Helical Device (LHD); deuterium experiment; ion temperature of 10 keV; plasma research; spectroscopic study; dispersion interferometer;
D O I
10.3390/atoms6040069
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
The Large Helical Device (LHD) is one of the world's largest superconducting helical system fusion-experiment devices. Since the start of experiments in 1998, it has expanded its parameter regime. It has also demonstrated world-leading steady-state operation. Based on this progress, the LHD has moved on to the advanced research phase, that is, deuterium experiment, which started in March 2017. During the first deuterium experiment campaign, an ion temperature of 10 keV was achieved. This was a milestone in helical systems research: demonstrating one of the conditions for fusion. All of this progress and increased understanding have provided the basis for designing an LHD-type steady-state helical fusion reactor. Moreover, LHD plasmas have been utilized not only for fusion research, but also for diagnostics development and applications in wide-ranging plasma research. A few examples of such contributions of LHD plasmas (spectroscopic study and the development of a new type of interferometer) are introduced in this paper.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] IMPURITY PROBLEM IN QUASI STEADY-STATE TOROIDAL PLASMA EXPERIMENTS AND FUSION REACTORS
    DUCHS, D
    HAAS, G
    PFIRSCH, D
    VERNICKE.H
    JOURNAL OF NUCLEAR MATERIALS, 1974, 53 (01) : 102 - 106
  • [32] Steady-state tests of high-voltage ceramic feedthroughs and coaxial transmission line for ICRF heating system of the large helical device
    Mutoh, T
    Kumazawa, R
    Seki, T
    Simpo, F
    Nomura, G
    Ido, T
    Watari, T
    Noterdaeme, JM
    Zhao, YP
    FUSION TECHNOLOGY, 1999, 35 (03): : 297 - 308
  • [33] PLASMA PARAMETERS OF A STEADY-STATE REVERSED FIELD PINCH FUSION POWER REACTOR.
    Shimotohno, Hidetoshi
    Kondo, Shunsuke
    Oka, Yoshiaki
    Togo, Yasumasa
    Journal of the Faculty of Engineering, the University of Tokyo, Series A, 1985, (23): : 44 - 45
  • [34] A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution
    Kikuchi, Mitsuru
    ENERGIES, 2010, 3 (11) : 1741 - 1789
  • [35] Regression Approach for Acquiring a Quantitative Guidance toward Updating the Deuterium-Deuterium Fusion Neutron Emission Rate in the Large Helical Device
    Ogawa, Kunihiro
    Yokoyama, Masayuki
    Isobe, Mitsutaka
    PLASMA AND FUSION RESEARCH, 2020, 15
  • [36] Regression Approach for Acquiring a Quantitative Guidance toward Updating the Deuterium-Deuterium Fusion Neutron Emission Rate in the Large Helical Device
    Ogawa K.
    Yokoyama M.
    Isobe M.
    Plasma and Fusion Research, 2020, 15 : 1202087 - 1
  • [37] Steady-state operation using a dipole mode ion cyclotron heating antenna and 77 GHz electron cyclotron heating in the Large Helical Device
    Mutoh, T.
    Seki, T.
    Kumazawa, R.
    Saito, K.
    Kasahara, H.
    Seki, R.
    Kubo, S.
    Shimozuma, T.
    Yoshimura, Y.
    Igami, H.
    Takahashi, H.
    Nishiura, M.
    Shoji, M.
    Miyazawa, J.
    Nakamura, Y.
    Tokitani, M.
    Ashikawa, N.
    Masuzaki, S.
    Idei, H.
    Nomura, G.
    Murakami, A.
    Sakamoto, R.
    Motojima, G.
    Zhao, Y. P.
    Kwak, J. G.
    Takeiri, Y.
    Yamada, H.
    Kaneko, O.
    Komori, A.
    NUCLEAR FUSION, 2013, 53 (06)
  • [38] Overview of Large Helical Device experiments of basic plasma physics for solving crucial issues in reaching burning plasma conditions
    Ida, K.
    Yoshinuma, M.
    Kobayashi, M.
    Kobayashi, T.
    Kenmochi, N.
    Nespoli, F.
    Magee, R. M.
    Warmer, F.
    Dinklage, A.
    Matsuyama, A.
    Sakamoto, R.
    Nasu, T.
    Tokuzawa, T.
    Kinoshita, T.
    Tanaka, K.
    Tamura, N.
    Nagaoka, K.
    Nishiura, M.
    Takemura, Y.
    Ogawa, K.
    Motojima, G.
    Oishi, T.
    Morishita, Y.
    Varela, J.
    Hayashi, W. H. J.
    Markl, M.
    Bouvain, H.
    Liang, Y.
    Leconte, M.
    Moseev, D.
    Moiseenko, V. E.
    Albert, C. G.
    Allfrey, I.
    Alonso, A.
    Arellano, F. J.
    Ashikawa, N.
    Azegami, A.
    Bardoczi, L.
    Van Berkel, M.
    Beurskens, M.
    Binderbaue, M. W.
    Bortolon, A.
    Brezinsek, S.
    Bussiahn, R.
    Cappa, A.
    Carralero, D.
    Chan, I. C.
    Cheng, J.
    Dai, X.
    Den Hartog, D. J.
    NUCLEAR FUSION, 2024, 64 (11)
  • [39] Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the large helical device
    Isobe, M.
    Ogawa, K.
    Nishitani, T.
    Pu, N.
    Kawase, H.
    Seki, R.
    Nuga, H.
    Takada, E.
    Murakami, S.
    Suzuki, Y.
    Yokoyama, M.
    Osakabe, M.
    NUCLEAR FUSION, 2018, 58 (08)
  • [40] General Criteria and Operation Limits of a Steady-State Fusion Reactor with Respect to Plasma-Material Interaction
    Naujoks, D.
    PLASMA INTERACTION IN CONTROLLED FUSION DEVICES, 2010, 1237 : 3 - 17