PRECESSIONS OF OPPOSITE CHIRALITY FOR THE SPIN VECTOR IN A RIEMANN-CARTAN FRAMEWORK

被引:2
|
作者
PASINI, A [1 ]
机构
[1] UNIV BOLOGNA,DIPARTMENTO FIS,I-40126 BOLOGNA,ITALY
关键词
D O I
10.1016/0375-9601(90)90461-V
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The transpose of a given non-symmetric connection is also a connection. In a manifold endowed with torsion as a field, the somewhat intriguing conclusion is reached that, in the case of completely antisymmetric torsion, these two distinct connections give rise to precessions of opposite chirality for the spin vector. The physical relevance of this effect is discussed.
引用
收藏
页码:459 / 463
页数:5
相关论文
共 50 条
  • [21] Deviation equation in Riemann-Cartan spacetime
    Puetzfeld, Dirk
    Obukhov, Yuri N.
    PHYSICAL REVIEW D, 2018, 97 (10)
  • [22] NEW LOOK AT THE RIEMANN-CARTAN THEORY
    AURILIA, A
    SPALLUCCI, E
    PHYSICAL REVIEW D, 1990, 42 (02): : 464 - 468
  • [23] Dirac Particle in Riemann-Cartan Spacetimes
    Obukhov, Yu. N.
    Silenko, A. J.
    Teryaev, O. V.
    PHYSICS OF PARTICLES AND NUCLEI, 2018, 49 (01) : 9 - 10
  • [24] Riemann-Cartan Gravity with Dynamical Signature
    Bondarenko, S.
    Zubkov, M. A.
    JETP LETTERS, 2022, 116 (01) : 54 - 60
  • [25] Perfect spin fluid with a color charge in a color field in Riemann-Cartan space
    Babourova, OV
    Vshivtsev, AS
    Myasnikov, VP
    Frolov, BN
    PHYSICS OF ATOMIC NUCLEI, 1998, 61 (12) : 2175 - 2179
  • [26] The squares of the dirac and spin-dirac operators on a Riemann-Cartan space(time)
    Notte-Cuello, E. A.
    Rodrigues, W. A., Jr.
    Souza, Q. A. G.
    REPORTS ON MATHEMATICAL PHYSICS, 2007, 60 (01) : 135 - 157
  • [27] Riemann-Cartan geometry of nonlinear disclination mechanics
    Yavari, Arash
    Goriely, Alain
    MATHEMATICS AND MECHANICS OF SOLIDS, 2013, 18 (01) : 91 - 102
  • [28] Torsion Structure in Riemann-Cartan Manifold and Dislocation
    Xiguo Lee
    Marcello Baldo
    Yishi Duan
    General Relativity and Gravitation, 2002, 34 : 1569 - 1577
  • [29] Evaluation of the heat kernel in Riemann-Cartan space
    Yajima, S
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (09) : 2423 - 2435
  • [30] Comment on 'Braneworld remarks in Riemann-Cartan manifolds'
    Khakshournia, S.
    CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (17)