COUNTING PATHS IN YOUNG LATTICE

被引:12
|
作者
GESSEL, IM [1 ]
机构
[1] BRANDEIS UNIV,DEPT MATH,WALTHAM,MA 02254
基金
美国国家科学基金会;
关键词
YOUNG LATTICE; TABLEAUX; OSCILLATING TABLEAUX; SYMMETRICAL FUNCTIONS; SCHUR FUNCTIONS; PIERIS RULE; DIFFERENTIAL POSETS;
D O I
10.1016/0378-3758(93)90038-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Young's lattice is the lattice of partitions of integers, ordered by inclusion of diagrams. Standard young tableaux can be represented as paths in Young's lattice that go up by one square at each step, and more general paths in Young's lattice correspond to more general kinds of tableaux. Using the theory of symmetric functions, in particular Pieri's rule for multiplying a Schur function by a complete symmetric function, we derive formulas for counting paths in Young's lattice that go up or down by horizontal or vertical strips. Our results are related to Richard Stanley's theory of differential posets in the special case of Young's lattice.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 50 条
  • [41] Counting lattice vectors
    Charles, Denis Xavier
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2007, 73 (06) : 962 - 972
  • [42] Approximately counting paths and cycles in a graph
    Yamamoto, Masaki
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 381 - 387
  • [43] Counting Paths in VPA Is Complete for #NC
    Krebs, Andreas
    Limaye, Nutan
    Mahajan, Meena
    ALGORITHMICA, 2012, 64 (02) : 279 - 294
  • [45] Counting Prefixes of Skew Dyck Paths
    Baril, Jean-Luc
    Ramirez, Jose L.
    Simbaqueba, Lina M.
    JOURNAL OF INTEGER SEQUENCES, 2021, 24 (08)
  • [46] COUNTING MINIMAL PATHS IN DIGITAL GEOMETRY
    DAS, PP
    PATTERN RECOGNITION LETTERS, 1991, 12 (10) : 595 - 603
  • [47] COUNTING PATHS - NONDETERMINISM AS LINEAR ALGEBRA
    BENSON, DB
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 1984, 10 (06) : 785 - 794
  • [48] Counting arithmetical structures on paths and cycles
    Braun, Benjamin
    Corrales, Hugo
    Corry, Scott
    Puente, Luis David Garcia
    Glass, Darren
    Kaplan, Nathan
    Martin, Jeremy L.
    Musiker, Gregg
    Valencia, Carlos E.
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2949 - 2963
  • [49] Counting of Shortest Paths in a Cubic Grid
    Dutt, Mousumi
    Biswas, Arindam
    Nagy, Benedek
    ACTA POLYTECHNICA HUNGARICA, 2024, 21 (06) : 169 - 186
  • [50] Counting Dominating Sets in Paths Solution
    Kwong, Harris
    Cook, Charlie
    Plaza, Angel
    FIBONACCI QUARTERLY, 2015, 53 (02): : 190 - 191