The Arity Hierarchy in the Polyadic mu-Calculus

被引:1
|
作者
Lange, Martin [1 ]
机构
[1] Univ Kassel, Sch Elect Engn & Comp Sci, Kassel, Germany
关键词
D O I
10.4204/EPTCS.191.10
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The polyadic mu-calculus is a modal fixpoint logic whose formulas define relations of nodes rather than just sets in labelled transition systems. It can express exactly the polynomial-time computable and bisimulation-invariant queries on finite graphs. In this paper we show a hierarchy result with respect to expressive power inside the polyadic mu-calculus: for every level of fixpoint alternation, greater arity of relations gives rise to higher expressive power. The proof uses a diagonalisation argument.
引用
收藏
页码:105 / 116
页数:12
相关论文
共 50 条
  • [1] Simplifying the modal mu-calculus alternation hierarchy
    Bradfield, JC
    [J]. STACS 98 - 15TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 1998, 1373 : 39 - 49
  • [2] The modal mu-calculus alternation hierarchy is strict
    Bradfield, JC
    [J]. THEORETICAL COMPUTER SCIENCE, 1998, 195 (02) : 133 - 153
  • [3] Relating levels of the mu-calculus hierarchy and levels of the monadic hierachy
    Janin, D
    Lenzi, G
    [J]. 16TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2001, : 347 - 356
  • [4] Games for the mu-calculus
    Niwinski, D
    Walukiewicz, I
    [J]. THEORETICAL COMPUTER SCIENCE, 1996, 163 (1-2) : 99 - 116
  • [5] EQUATIONAL MU-CALCULUS
    NIWINSKI, D
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1985, 208 : 167 - 176
  • [6] Domain mu-calculus
    Zhang, GQ
    [J]. RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2003, 37 (04): : 337 - 364
  • [7] Lukasiewicz mu-calculus
    Mio, Matteo
    Simpson, Alex
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2013, (126): : 87 - 104
  • [8] The Horn mu-calculus
    Charatonik, W
    McAllester, D
    Niwinski, D
    Podelski, A
    Walukiewicz, I
    [J]. THIRTEENTH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 1998, : 58 - 69
  • [9] The mu-Calculus Alternation Hierarchy Collapses over Structures with Restricted Connectivity
    Gutierrez, Julian
    Klaedtke, Felix
    Lange, Martin
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (96): : 113 - 126
  • [10] Continuous Fragment of the mu-Calculus
    Fontaine, Gaelle
    [J]. COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2008, 5213 : 139 - 153