QUANTUM LOGIC AND THE CLASSICAL PROPOSITIONAL CALCULUS

被引:3
|
作者
MALHAS, OQ
机构
关键词
D O I
10.2307/2274369
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:834 / 841
页数:8
相关论文
共 50 条
  • [21] An analytic calculus for quantified propositional Godel logic
    Baaz, M
    Fermüller, C
    Veith, H
    AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, 2000, 1847 : 112 - 126
  • [22] Abstract interpretation of proofs: Classical propositional calculus
    Hyland, M
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2004, 3210 : 6 - 21
  • [23] Categorical proof theory of classical propositional calculus
    Bellin, Gianluigi
    Hyland, Martin
    Robinson, Edmund
    Urban, Christian
    THEORETICAL COMPUTER SCIENCE, 2006, 364 (02) : 146 - 165
  • [24] A coding method for a sequent calculus of propositional logic
    R. Alonderis
    Lithuanian Mathematical Journal, 2008, 48 : 123 - 136
  • [25] A coding method for a sequent calculus of propositional logic
    Alonderis, R.
    LITHUANIAN MATHEMATICAL JOURNAL, 2008, 48 (02) : 123 - 136
  • [26] The Lambek Calculus Extended with Intuitionistic Propositional Logic
    Kaminski, Michael
    Francez, Nissim
    STUDIA LOGICA, 2016, 104 (05) : 1051 - 1082
  • [27] A Forward Unprovability Calculus for Intuitionistic Propositional Logic
    Fiorentini, Camillo
    Ferrari, Mauro
    AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, TABLEAUX 2017, 2017, 10501 : 114 - 130
  • [28] Isomorphic formulae in classical propositional logic
    Dosen, Kosta
    Petric, Zoran
    MATHEMATICAL LOGIC QUARTERLY, 2012, 58 (1-2) : 5 - 17
  • [29] Naming proofs in classical propositional logic
    Lamarche, F
    Strassburger, L
    TYPED LAMBDA CALCULI AND APPLICATIONS, PROCEEDINGS, 2005, 3461 : 246 - 261
  • [30] Theories of the Classical Propositional Logic and Substitutions
    I. A. Gorbunov
    Mathematical Notes, 2021, 110 : 887 - 893