Underwater Transient Signal Classification Using Eigen Decomposition Based on Wigner-Ville Distribution Function

被引:0
|
作者
Lim, Tae-Gyun
Bae, Keun-Sung
Hwang, Chan-Sik
Lee, Hyeong-Uk
机构
来源
关键词
SONAR; Underwater transient signal classification; Wigner-Ville distribution function; Eigenvalue decomposition; Feature vector extraction;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper presents new transient signal classification algorithms for underwater transient signals. In general, the ambient noise has small spectral deviation and energy variation, while a transient signal has large fluctuation. Hence to detect the transient signal, we use the spectral deviation and power variation. To classify the detected transient signal, the feature parameters are obtained by using the Wigner-Ville distribution based eigenvalue decomposition. The correlation is then calculated between the feature vector of the detected signal and all the feature vectors of the reference templates frame-by-frame basis, and the detected transient signal is classified by the frame mapping rate among the class database.
引用
收藏
页码:123 / 128
页数:6
相关论文
共 50 条
  • [31] Holographic particle sizing using Wigner-Ville distribution
    Chuamchaitrakool, Porntip
    Widjaja, Joewono
    Yoshimura, Hiroyuki
    [J]. OPTICS AND LASERS IN ENGINEERING, 2015, 67 : 186 - 190
  • [32] Wigner-Ville distribution function in the framework of linear canonical transform
    Kumar, Amit
    Prasad, Akhilesh
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (03)
  • [33] Application of spectral decomposition technology in shallow gas detection based on Wigner-Ville distribution
    CHI Huanzhao
    LIU Cai
    SHAN Xuanlong
    WANG Dian
    LU Qi
    [J]. Global Geology, 2014, 17 (04) : 243 - 246
  • [34] Cross-term suppression in the Wigner-Ville distribution using variational mode decomposition
    Meena, Preeti
    Sharma, Rishi Raj
    Pachori, Ram Bilas
    [J]. PROCEEDINGS OF 2019 5TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTING AND CONTROL (ISPCC 2K19), 2019, : 323 - 328
  • [35] DETECTION OF CHANGES OF SIGNAL STRUCTURE BY USING THE WIGNER-VILLE SPECTRUM
    MARTIN, W
    FLANDRIN, P
    [J]. SIGNAL PROCESSING, 1985, 8 (02) : 215 - 233
  • [36] Wigner-Ville distribution function in the framework of linear canonical transform
    Amit Kumar
    Akhilesh Prasad
    [J]. Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [37] Echo Identification by Singular Value Decomposition of Cross Wigner-Ville Distribution
    Kwan, Chi-Hang
    Sinclair, Anthony N.
    [J]. 2014 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2014, : 556 - 559
  • [38] Wigner-Ville distribution and gabor transform in Doppler ultrasound signal processing
    Ghofrani, S
    Ayatollahi, A
    Shamsollahi, MB
    [J]. BIOMEDICAL SCIENCES INSTRUMENTATION, VOL 39, 2003, 39 : 142 - 147
  • [39] Spread spectrum signals classification based on the Wigner-Ville distribution and neural network probability density function estimation
    Grishin, Yuri
    [J]. 6TH INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT APPLICATIONS, PROCEEDINGS, 2007, : 197 - +
  • [40] Presumption of phase shift in resonant dynamical systems using Wigner-Ville distribution function
    Niimi, H
    Yatsu, S
    Kayukawa, N
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2002, 41 (2A): : 936 - 941