Some new integral inequalities of Hermite-Hadamard type for (log, (alpha, m))-convex functions on co-ordinates

被引:0
|
作者
Xi, Bo-Yan [1 ]
Qi, Feng [2 ,3 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[2] Tianjin Polytech Univ, Sch Sci, Dept Math, Tianjin 300387, Peoples R China
[3] Henan Polytech Univ, Inst Math, Jiaozuo City 454010, Henan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Co-ordinates; (log; (alpha; m))-convex functions on co-ordinates; Hermite-Hadamard's inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the authors introduce a new concept "(log, (alpha, m))-convex functions on the co-ordinates on the rectangle of the plane" and establish some new integral inequalities of Hermite-Hadamard type for (log, (alpha,m))-convex functions on the co-ordinates on the rectangle from the plane.
引用
收藏
页码:509 / 525
页数:17
相关论文
共 50 条
  • [31] FRACTIONAL TYPE HERMITE-HADAMARD INEQUALITIES FOR CONVEX AND AG(Log)-CONVEX FUNCTIONS
    Luo, Zijian
    Wang, JinRong
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2015, 30 (05): : 649 - 662
  • [32] HERMITE-HADAMARD TYPE INEQUALITIES FOR (p(1), h(1))-(p(2), h(2))-CONVEX FUNCTIONS ON THE CO-ORDINATES
    Yang, Wengui
    TAMKANG JOURNAL OF MATHEMATICS, 2016, 47 (03): : 289 - 322
  • [33] New Conformable Fractional Integral Inequalities of Hermite-Hadamard Type for Convex Functions
    Mohammed, Pshtiwan Othman
    Hamasalh, Faraidun Kadir
    SYMMETRY-BASEL, 2019, 11 (02):
  • [34] Inequalities of Hermite-Hadamard-Fejer type for convex functions and convex functions on the co-ordinates in a rectangle from the plane
    Tseng, Kuei-Lin
    Pecaric, J.
    Hwang, Shiow-Ru
    Chen, Yi-Liang
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (03): : 703 - 717
  • [35] Hermite-Hadamard Type Inequalities for (α, m)-Geometrically Convex Functions
    Onalan, Havva Kavurmaci
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [36] Hermite-Hadamard type inequalities for the product of (α, m)-convex functions
    Yin, Hong-Ping
    Qi, Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (03): : 231 - 236
  • [37] Hermite-Hadamard type inequalities for harmonically (α, m)-convex functions
    Iscan, Imdat
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (02): : 381 - 390
  • [38] ON SOME HERMITE-HADAMARD TYPE INEQUALITIES FOR CERTAIN CONVEX FUNCTIONS
    Tunc, Mevlut
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2014, 15 (01): : 3 - 10
  • [39] Some Hermite-Hadamard type integral inequalities for convex functions defined on convex bodies in Rn
    Dragomir, Silvestru Sever
    JOURNAL OF APPLIED ANALYSIS, 2020, 26 (01) : 67 - 77
  • [40] Hadamard type inequalities for phi-convex functions on the co-ordinates
    Set, Erhan
    Sarikaya, Mehmet Zeki
    Akdemir, Ahmet Ocak
    TBILISI MATHEMATICAL JOURNAL, 2014, 7 (02): : 51 - 60