OPTIMAL DESIGNS WITH A TCHEBYCHEFFIAN SPLINE REGRESSION FUNCTION

被引:7
|
作者
MURTY, VN
机构
来源
ANNALS OF MATHEMATICAL STATISTICS | 1971年 / 42卷 / 02期
关键词
D O I
10.1214/aoms/1177693414
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:643 / &
相关论文
共 50 条
  • [11] ADMISSIBLE DESIGNS FOR POLYNOMIAL SPLINE REGRESSION
    STUDDEN, WJ
    VANARMAN, DJ
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (05): : 1557 - &
  • [12] OPTIMAL DESIGNS WITH POLYNOMIAL SPLINE REGRESSION WITH A SINGLE MULTIPLE KNOT AT CENTRE (PRELIMINARY REPORT)
    MURTY, VN
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (05): : 1858 - +
  • [13] OPTIMAL DESIGNS IN REGRESSION PROBLEMS WITH A GENERAL CONVEX LOSS FUNCTION
    LAYCOCK, PJ
    SILVEY, SD
    [J]. BIOMETRIKA, 1968, 55 (01) : 53 - &
  • [14] Optimal designs for trigonometric regression
    Zhang, Chongqi
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (1-4) : 755 - 766
  • [15] Optimal designs for indirect regression
    Biedermann, Stefanie
    Bissantz, Nicolai
    Dette, Holger
    Jones, Edmund
    [J]. INVERSE PROBLEMS, 2011, 27 (10)
  • [16] Optimal designs for Cox regression
    Lopez-Fidalgo, J.
    Rivas-Lopez, M. J.
    del Campo, R.
    [J]. STATISTICA NEERLANDICA, 2009, 63 (02) : 135 - 148
  • [17] D-optimal designs for polynomial regression with exponential weight function
    Fu-Chuen Chang
    Hsiu-Ching Chang
    Sheng-Shian Wang
    [J]. Metrika, 2009, 70 : 339 - 354
  • [18] D-optimal designs for polynomial regression with exponential weight function
    Chang, Fu-Chuen
    Chang, Hsiu-Ching
    Wang, Sheng-Shian
    [J]. METRIKA, 2009, 70 (03) : 339 - 354
  • [19] On the optimal amount of smoothing in penalised spline regression
    Wand, MP
    [J]. BIOMETRIKA, 1999, 86 (04) : 936 - 940
  • [20] D-Optimal Designs for the Mitscherlich Non-Linear Regression Function
    Heidari, Maliheh
    Abu Manju, Md
    IJzerman-Boon, Pieta C.
    van den Heuvel, Edwin R.
    [J]. MATHEMATICAL METHODS OF STATISTICS, 2022, 31 (01) : 1 - 17